
Scalable Monte Carlo for Bayesian
Learning

Paul Fearnhead, Christopher Nemeth, Chris J. Oates and Chris Sherlock

Contents

Preface 1

1 Background 4
1.1 Monte Carlo Methods 5

1.1.1 What is Monte Carlo Integration? 5
1.1.2 Importance Sampling 7
1.1.3 Monte Carlo or Quadrature? 7
1.1.4 Control Variates 9
1.1.5 Monte Carlo Integration and Bayesian Statistics 11

1.2 Example Applications 14
1.2.1 Logistic Regression 14
1.2.2 Bayesian Matrix Factorisation 15
1.2.3 Bayesian Neural Networks for Classification 16

1.3 Markov Chains 17
1.3.1 Reversible Markov chains 18
1.3.2 Convergence, Averages, and Variances 19

1.4 Stochastic Differential Equations 22
1.4.1 The Ornstein–Uhlenbeck Process 23
1.4.2 The Infinitesimal Generator 25
1.4.3 Langevin Diffusions 25

1.5 The Kernel Trick 28
1.5.1 Finite-Dimensional Inner Product Spaces 28
1.5.2 Kernels in a Finite-Dimensional Inner Product Space 31
1.5.3 A New Inner Product and the Kernel Trick in Finite Dimensions 33
1.5.4 General Kernels 35
1.5.5 The Power of the Kernel Trick 38

1.6 Chapter Notes 40

2 Reversible MCMC and its Scaling 42
2.1 The Metropolis–Hastings Algorithm 43

2.1.1 Component-wise updates and Gibbs moves 48
2.1.2 The Metropolis–Hastings Independence Sampler 49
2.1.3 The Random Walk Metropolis Algorithm 50

iii

iv Contents

2.1.4 The Metropolis-Adjusted Langevin Algorithm 53
2.2 Hamiltonian Monte Carlo 57
2.3 Chapter Notes 63

3 Stochastic Gradient MCMC Algorithms 65
3.1 The Unadjusted Langevin Algorithm 65
3.2 Approximate vs. Exact MCMC 67
3.3 Stochastic Gradient Langevin Dynamics 69

3.3.1 Controlling Stochasticity in the Gradient Estimator 72
3.3.2 Example: The Value of Control Variates 78
3.3.3 Convergence Results for Stochastic Gradient Langevin Dynamics 80

3.4 A General Framework for stochastic gradient MCMC 85
3.5 Guidance for Efficient Scalable Bayesian Learning 90

3.5.1 Experiments on a Logistic Regression Model 92
3.5.2 Experiments on a Bayesian Neural Network Model 97

3.6 Generalisations and Extensions 100
3.6.1 Scalable Inference for Models in Constrained Spaces 100
3.6.2 Scalable Inference with Time Series Data 102

3.7 Chapter Notes 105

4 Non-Reversible MCMC 106
4.1 The Benefits of Non-Reversibility 106
4.2 Hamiltonian Monte Carlo Revisited 109
4.3 Lifting Schemes for MCMC 112

4.3.1 Non-Reversible HMC 112
4.3.2 Gustafson’s Algorithm and Multidimensional Generalisations 113

4.4 Improving Non-reversibility: Delayed Rejection 119
4.4.1 The Discrete Bouncy Particle Sampler 121

4.5 Chapter Notes 124

5 Continuous-Time MCMC 126
5.1 Continuous-Time MCMC as the Limit of Non-Reversible MCMC 126
5.2 Piecewise Deterministic Markov Processes 129

5.2.1 What is a PDMP? 129
5.2.2 Simulating PDMPs 130
5.2.3 The Generator and Invariant Distribution of a PDMP 134
5.2.4 The Limiting Process of Section 5.1 as a PDMP 136

5.3 Continuous-time MCMC via PDMPs 139
5.3.1 Different Samplers 140
5.3.2 Use of PDMP Output 154
5.3.3 Comparison of Samplers 155

5.4 Efficient Simulation of PDMP Samplers 159
5.4.1 Simulating PDMPs 159
5.4.2 Exploiting Model Sparsity 165

Contents v

5.4.3 Data Subsampling Ideas 168
5.5 Extensions 175

5.5.1 Discontinuous Target Distribution 176
5.5.2 Reversible Jump PDMP Samplers 179
5.5.3 More General Velocity Models 184

5.6 Chapter Notes 191

6 Assessing and Improving MCMC 192
6.1 Diagnostics for MCMC 192

6.1.1 Convergence Diagnostics 193
6.1.2 Bias Diagnostics 194
6.1.3 Improved Bias Diagnostics via the Kernel Trick 197

6.2 Convergence Bounds for MCMC 200
6.2.1 Bounds on Integral Probability Metrics 200
6.2.2 Choice of Auxiliary Markov Process 203
6.2.3 Kernel Stein Discrepancy 205
6.2.4 Convergence Control 210
6.2.5 Stochastic Gradient Stein Discrepancy 216

6.3 Optimal Weights for MCMC 218
6.4 Optimal Thinning for MCMC 222
6.5 Chapter Notes 224

References 227
Index 237

Preface

At the time of writing, science, industry, and society are being transformed
by the emergence of a new generation of powerful machine learning and
artificial intelligence (AI) methodologies. The safe use of such algorithms
demands a probabilistic viewpoint, enabling reasoning in settings where
data are noisy or limited, and endowing predictions with an appropriate
degree of confidence for downstream decision-making and mitigation of
risk. Yet, it remains true that fundamental probabilistic operations, such as
conditioning on an observed dataset, are not easily performed at the scale
required.

The aim of this book is to provide a graduate-level introduction to ad-
vanced topics in Markov chain Monte Carlo (MCMC), as applied broadly in
the Bayesian computational context. Most, if not all of these topics (stochas-
tic gradient MCMC, non-reversible MCMC, continuous time MCMC, and
new techniques for convergence assessment) have emerged as recently as
the last decade, and have driven substantial recent practical and theoretical
advances in the field. A particular focus is on methods that are scalable
with respect to either the amount of data, or the data dimension, motivated
by the emerging high-priority application areas in machine learning and
AI. Throughout this book, the clear presentation of ideas is prioritised over
a rigorous technical treatment of all mathematical details; appropriate ref-
erences for further reading are provided in the end-notes of each chapter.
In particular, we will limit the use of measure theory; the reader should
assume that all sets and functions are measurable with respect to an appro-
priate sigma-algebra, and all continuous distributions should be assumed to
be absolutely continuous with respect to Lebesgue measure and all densities
should be assumed to be densities with respect to Lebesgue measure.

This book has been indirectly shaped by the researchers and colleagues
– too numerous to name individually – who have contributed to recent
progress in the field. Special gratitude must go to Rebekah Fearnhead,
Heishiro Kanagawa, Tamás Papp and Lorenzo Rimella, for proof-reading

1

2 Preface

the manuscript, to Richard Howey for typesetting the figures, and to Natalie
Tomlinson and Anna Scriven for their encouragement and typesetting sup-
port. The authors are grateful for financial support from the Engineering and
Physical Sciences Council (through grants EP/W019590/1, EP/R018561/1,
EP/R034710/1, EP/V022636/1 and EP/Y028783/1), the Alan Turing Insti-
tute, and the Leverhulme Trust.

Paul Fearnhead Chris J. Oates
Christopher Nemeth Newcastle University, UK
Chris Sherlock
Lancaster University, UK

Preface 3

Common Notation
𝑛 total number of iterations of an algorithm or Monte Carlo

sample size.
𝑑 dimension (of parameter space).
𝑁 number of elements in the dataset.
D the dataset {y1, . . . , y𝑁 },.
𝜽 the parameter.
𝐿 (𝜽;D) the likelihood function.
ℓ(𝜽;D) the log-likelihood function.
𝜋0 (𝜽) the prior density.
𝜋(𝜽 |D) the posterior density, often abbreviated to 𝜋(𝜽).
I the indicator function.
I𝑑 the 𝑑 × 𝑑 identity matrix.
𝑥𝑖 the 𝑖th component of the vector x.
x𝑘 the 𝑘th vector in a sequence (x𝑘)𝑘=1,2,....
𝑥
(𝑖)
𝑘

the 𝑖th component of the vector x𝑘 .
i.i.d. independent and identically distributed.
D
= equal in distribution.
D→ converges in distribution.
𝛿x the Dirac distribution, which places all mass at x.
N(·; 𝝁,V) the density of a normal random variable with mean 𝝁 and

covariance V.
U𝑑 (·) the density for a uniform random variable on the 𝑑-

dimensional sphere, S𝑑−1 ⊂ R𝑑 .
L 𝑝 (𝜋) the set of measurable functions 𝑓 with

∫
| 𝑓 (x) |𝑝 d𝜋(x) < ∞.

𝐶𝑠 (R𝑑 ,R𝑝) the set of functions 𝑓 : R𝑑 → R𝑝 for which continuous
derivatives exist of orders up to 𝑠 ∈ {0, 1, . . . } ∪ {∞}.

𝑥𝑛 = 𝑂 (𝑎𝑛) there exist 𝑛0 and 𝑀 such that for all 𝑛 ≥ 𝑛0, |𝑥𝑛 | ≤ 𝑀𝑎𝑛.
𝑋𝑛 = 𝑂 𝑝 (𝑎𝑛) for any 𝜖 > 0 there exist 𝑛0 and 𝑀 such that for all 𝑛 ≥ 𝑛0,

P (|𝑋𝑛 | > 𝑀𝑎𝑛) < 𝜖 .

1

Background

This book describes some recent developments in scalable Monte Carlo
algorithms and their applications within Bayesian learning: what exactly
does this mean?

Monte Carlo methods are a class of computational methods that involve
repeated sampling to numerically approximate quantities of interest. We
specifically focus on Monte Carlo integration methods, which are sampling-
based methods for evaluating or approximating the value of integrals. Such
methods are widely used across science and engineering, but our motiva-
tion comes particularly from Bayesian statistics. One of the key quantities
in Bayesian statistics is the posterior distribution, which encapsulates our
belief regarding unknown parameters of a model given our prior belief
and an observed dataset. We can then obtain estimates of the parameters,
or quantify our uncertainty about the parameters, in terms of expectations
with respect to the posterior distribution. For example, a common estimate
of a parameter is the posterior expectation of that parameter; the predictive
probability of future observations is the expectation of the density/mass
function of the future observation taken with respect to the posterior distri-
bution. Calculating these expectations involves evaluating an integral, and
the idea of Monte Carlo is to use samples from the posterior to estimate
such integrals.

The main challenge with using Monte Carlo in Bayesian statistics is often
in deriving an efficient algorithm to sample from the posterior distribution.
Markov chain Monte Carlo is a general and widely-used class of methods
for sampling from a distribution, based on simulating a Markov process
that has the posterior distribution as its stationary distribution.

In recent years, there has been interest in applying Markov chain Monte
Carlo to ever-increasingly complex and challenging problems. For example,
the dimension, 𝑑 say, of the parameter space of the models we wish to fit
to data, or the number of data points, 𝑁 say, in our data set can be large.
As either 𝑑 or 𝑁 increases, the efficiency of Markov chain Monte Carlo

4

1.1 Monte Carlo Methods 5

methods may reduce. For example, as 𝑑 increases we may need to have
more iterations of our Markov chain Monte Carlo algorithm to achieve the
required level of accuracy, while as 𝑁 increases, the computational cost
per iteration of a standard algorithm will increase. Scalable Markov chain
Monte Carlo methods are specifically those methods which can scale well
as either or both of 𝑑 and 𝑁 increase.

The remainder of this introductory chapter will cover background rele-
vant to scalable Markov chain Monte Carlo. The next section will introduce
Monte Carlo methods, explain why Monte Carlo integration is widely-used,
and explain how it is relevant to Bayesian statistics. This will be followed
by an introduction to some of the statistical models and applications that
will be used to demonstrate the methods in this book, as well as an informal
and brief introduction to some of the concepts from stochastic processes
that will be used in later chapters. Finally, the chapter ends with a short
introduction to kernel methods in preparation for a deeper exposition in
Chapter 6.

1.1 Monte Carlo Methods
1.1.1 What is Monte Carlo Integration?

Assume we have a distribution of interest. For simplicity of presentation,
here and for the remainder of this chapter, we assume that the distribution
is continuous on R𝑑 . Let X denote a random variable with this distribution
and let 𝜋(x) denote the corresponding probability density function for X;
we will also use 𝜋 to refer to the distribution itself when that is necessary.
Then the expectation of some function ℎ of X is an integral

𝐼 = E [ℎ(X)] =
∫

ℎ(x)𝜋(x) dx.

This expectation is well-defined, that is, ℎ is integrable with respect to 𝜋,
if

∫
|ℎ(x) |𝜋(x) dx < ∞. We abbreviate this to ℎ ∈ L1(𝜋) and throughout

this section we assume that this holds true. If we can sample from 𝜋(·)
then we can estimate this expectation/integral by (i) drawing 𝑛 independent
realisations, x1, . . . , x𝑛, from 𝜋(·) and (ii) calculating the sample average
of the values ℎ(x1), . . . , ℎ(x𝑛). This gives an estimate of 𝐼, namely

𝐼 =
1
𝑛

𝑛∑︁
𝑘=1

ℎ(x𝑘).

This is called a Monte Carlo estimate of 𝐼, as it is obtained from independent,
random samples from 𝜋(·).

6 Background

The Monte Carlo estimator can be interpreted as being based on 𝑛 inde-
pendent random variables X1, . . . ,X𝑛, of which x1, . . . , x𝑛 are realisations.
Is it a good estimator? This is impossible to answer in generality, but we can
at least describe some good properties that the estimator can admit. First,
since the X𝑖 are i.i.d, E

[
𝐼
]
= E [ℎ(X1)] = 𝐼, so the estimator is unbiased.

Secondly, and more importantly, the strong law of large numbers tells us
that we can make our estimate arbitrarily accurate, with high probability,
if we choose 𝑛 large enough. Formally, provided 𝐼 is well defined, that is
ℎ ∈ L1(𝜋), and our samples from 𝜋(·) are independent, then as 𝑛→∞,

1
𝑛

𝑛∑︁
𝑘=1

ℎ(X𝑘) → 𝐼 almost surely. (1.1)

Almost sure convergence means that the collection of outcomes where the
convergence does not occur has a combined probability of 0.

Thus, with high probability, our Monte Carlo estimator will be accurate
if we choose 𝑛 large enough, but the result does not tell us how large 𝑛
needs to be, nor how accurate the estimator will be for a given value of
𝑛. However, provided that

∫
ℎ(x)2𝜋(x) dx < ∞, which we abbreviate to

ℎ ∈ L2(𝜋), we can use the central limit theorem to answer these questions.
Again assume that our samples from 𝜋(·) are independent, and define

𝑉 =

∫
{ℎ(x) − 𝐼}2𝜋(x) dx.

Then, the central limit theorem states that

√
𝑛

(
1
𝑛

∑𝑛
𝑘=1 ℎ(X𝑘) − 𝐼√

𝑉

)
D→ N(0, 1),

as 𝑛→∞. Here the convergence is in distribution, and we have convergence
to a standard normal distribution in the limit.

One way of interpreting this result is that, for large enough 𝑛, approxi-
mately,

1
𝑛

𝑛∑︁
𝑘=1

ℎ(X𝑘) ∼ N
(
𝐼,
𝑉

𝑛

)
.

That is our estimator will be approximately normally distributed, with
mean equal to the integral, 𝐼, and a variance that is𝑉/𝑛. This shows that the
quantity𝑉 governs how easy it is to estimate 𝐼 via Monte Carlo integration,
and the accuracy depends on both 𝑉 and 𝑛. The order of the error of a
Monte Carlo estimator is

√︁
𝑉/𝑛 and, thus, the Monte Carlo error decays

with sample size at a rate of 𝑛−1/2.

1.1 Monte Carlo Methods 7

1.1.2 Importance Sampling
What if we are interested in calculating or approximating a more general
integral, 𝐼 =

∫
Ω
𝑔(x)dx, of some function 𝑔 over a region Ω? We can use

Monte Carlo sampling to estimate this integral by re-writing the integral as
an expectation with respect to some density function 𝑞(·) defined on Ω as
follows,

𝐼 =

∫
Ω

𝑔(x)
𝑞(x) 𝑞(x) dx = E [ℎ(X)] ,

where ℎ(x) = 𝑔(x)/𝑞(x). If 𝐼 is well-defined, that is
∫
|𝑔(x) |dx < ∞, then

ℎ ∈ L1(𝑞), and 𝐼 can be estimated using Monte Carlo integration as above,
based on independent realised samples x1, . . . , x𝑛 from 𝑞(·) by calculating
the arithmetic mean of ℎ(x1), . . . , ℎ(x𝑛). This process is called Importance
Sampling, and 𝑞(·) is known as the proposal distribution.

For this Monte Carlo estimator to be feasible, we have two constraints
on 𝑞. First, we need 𝑞(x) > 0 whenever 𝑔(x) > 0, in order for ℎ(x) to be
well-defined. Second, we need to be able to easily sample from 𝑞(·). The
choice of 𝑞(·) will affect the accuracy of the estimator, with the variance of
our estimator for a Monte Carlo sample of size 𝑛 being 𝑉/𝑛 where

𝑉 =

∫ (
𝑔(x)
𝑞(x) − 𝐼

)2

𝑞(x) dx.

This variance will be small if 𝑔(x)/𝑞(x) is roughly constant, and one can
show that the optimal choice of 𝑞(·) in terms of minimising 𝑉 is 𝑞(x) ∝
|𝑔(x) |. If 𝑔(x) is non-negative everywhere (or non-positive everywhere)
then such a choice of 𝑞 will give an estimator that has zero-variance, that
is an exact estimator. More generally the variance 𝑉 will be large if there
are values of x for which 𝑔(x)/𝑞(x) is large. This leads to a rule-of-thumb
that, if Ω is unbounded, one wants 𝑞(x) to have heavier tails than |𝑔(x) | to
avoid this ratio blowing up as ∥x∥ → ∞.

1.1.3 Monte Carlo or Quadrature?
It is natural to ask why one should use Monte Carlo integration when
there are alternative numerical integration methods, such as quadrature. To
see the potential benefits of Monte Carlo methods, consider estimating an
integral on the unit hyper-cube [0, 1]𝑑 . We can then compare quadrature
with Monte Carlo integration based on samples from a uniform distribution
on [0, 1]𝑑 .

First, consider 𝑑 = 1. In this case, quadrature methods tend to be much

8 Background

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

h
(x

)

Figure 1.1 Example of trapezoid rule. We can estimate the
integral, by (i) setting 𝑥1, . . . , 𝑥𝑛 to be evenly spaced points on
[0, 1]; (ii) creating 𝑛 − 1 trapezoids based on joining up the points
(𝑥𝑘 , ℎ(𝑥𝑘)) (shaded in regions); and (iii) estimating the integral
by the sum of the areas of the trapezoids.

more accurate than Monte Carlo methods. We have seen that the Monte
Carlo variance, if we have 𝑛Monte Carlo samples, is𝑂 (1/𝑛), which means
that the error of our Monte Carlo estimator will be 𝑂 𝑝 (𝑛−1/2).

By comparison, a simple numerical method is the trapezoidal rule. This
involves evaluating the integrand, ℎ(𝑥) at a set of equally spaced points,
𝑥1, . . . , 𝑥𝑛, on [0, 1], and approximating the integral using the total area of
the trapezoids formed by joining up the points (𝑥𝑘 , ℎ(𝑥𝑘)) for 𝑘 = 1, . . . , 𝑛,
see Figure 1.1. Assuming our integrand has a bounded second derivative
|ℎ′′(𝑥) | < 𝐿 for some 𝐿, then we can bound the error in the estimate of
the integral as 𝐿𝛿2/12, where 𝛿 = 1/(𝑛 − 1) is the width of each trapezoid.
This gives an error that decays like 𝑂 (1/𝑛2), which is much better than the
Monte Carlo method. Furthermore, higher-order quadrature methods, such
as Simpson’s rule, can obtain even faster decay of the approximate error
with 𝑛, if the integrand is sufficiently smooth.

So, quadrature methods can be more accurate for 1-dimensional integrals,
at least for functions whose second derivatives are bounded. However,

1.1 Monte Carlo Methods 9

now consider higher-dimensional integrals involving functions ℎ(x), the
only information about which we have is that the second-order (partial)
derivatives are bounded. Then we can apply a cubature rule based on a grid
of 𝑚 + 1 equally spaced points in each dimension. The spacing of these
points will be 𝛿 = 1/𝑚 and there will be 𝑛 = (𝑚 + 1)𝑑 points in total.
If we have a cubature whose error decays like 𝛿𝑟 , for some power 𝑟 , for
example, 𝑟 = 2 for the trapezoidal rule, then the error decays at a rate of
𝑚−𝑟 ≈ 𝑛−𝑟/𝑑 . For large 𝑑, this convergence will be slower than the 𝑛−1/2

rate of Monte Carlo integration, explaining why Monte Carlo is often the
default method for numerically approximating high-dimensional integrals.
To overcome this curse of dimension in cubature, it is usually necessary to
identify a sense in which the integrand ℎ(x) is effectively low-dimensional,
which can be difficult or impossible depending on the applied context.

1.1.4 Control Variates
Let us return to the problem of estimating the expectation of some function
of a random variable,

𝐼 = E [ℎ(X)] =
∫

ℎ(x)𝜋(x) dx,

where 𝜋(x) is the density of X. We have seen how we can estimate this using
a sample from 𝜋(·), and that the accuracy of this estimator is proportional
to

𝑉 =

∫
{ℎ(x) − 𝐼}2 𝜋(x) dx =

∫
ℎ(x)2𝜋(x) dx − 𝐼2.

The latter expression is just the standard expression for the variance of
ℎ(X). This shows that it is easier to estimate expectations of functions that
vary less when evaluated at X.

Assume that we know the expectation of a set of random variables
𝑔1(X), . . . , 𝑔𝐽 (X), each a transformation of X. Without loss of generality,
we can assume that these random variables have mean zero, i.e.,

E
[
𝑔 𝑗 (X)

]
= 0, for 𝑗 = 1, . . . , 𝐽,

as, if this is not the case, we can define new random variables equal to
the old random variables minus their expectations. Then, for any constants
𝛾1, . . . , 𝛾𝑛,

𝐼 = E [ℎ(X)] −
𝐽∑︁
𝑗=1

𝛾 𝑗E
[
𝑔 𝑗 (X)

]
= E

[
ℎ(X) −

𝐽∑︁
𝑗=1

𝛾 𝑗𝑔𝐽 (X)
]
. (1.2)

10 Background

2 0 2
x

0

2

2 0 2
x

0

2

2 0 2
x

0

2

Figure 1.2 Example of control variates for estimating E [sin(𝑋)],
where 𝑋 has a standard normal distribution N(0, 1). Each plot
shows the function whose expectation is being estimated and 50
values used in the Monte Carlo estimate (dots). From left to right
the functions are respectively: ℎ(𝑥) = sin(𝑥), ℎ(𝑥) = sin(𝑥) − 𝑥,
and ℎ(𝑥) = sin(𝑥) − 𝜋𝑥/2 + (𝑥2 − 1)/2. The expectation of each
function is constructed to be the same. The effect of introducing
control variates in the middle and right-hand plot is to flatten out
the function we are integrating – in the middle plot, this happens
for 𝑥 ≈ 0 and for the right-hand plot for 𝑥 ≈ 𝜋/2. The variability
of the function values, i.e. the dots, is smallest for the middle plot
and largest for the right-hand plot.

By suitable choice of the constants 𝛾1, . . . , 𝛾𝐽 , the variability of the random
variable ℎ(X) −∑𝐽

𝑗=1 𝛾 𝑗𝑔 𝑗 (X) can be made smaller than that of ℎ(X), and
thus a Monte Carlo estimate of 𝐼 based on (1.2) will have smaller Monte
Carlo variance than the basic Monte Carlo estimator. We call

∑𝐽
𝑗=1 𝛾 𝑗𝑔 𝑗 (X)

a control variate for ℎ(X). Heuristically, we want to choose 𝛾1, . . . , 𝛾𝐽 so
that ℎ(X) ≈ 𝛾0 +

∑𝐽
𝑗=1 𝛾 𝑗𝑔 𝑗 (X), which means that ℎ(X) −∑𝐽

𝑗=1 𝛾 𝑗𝑔 𝑗 (X) is
approximately constant.

As a simple example, consider estimating the expectation of sin(𝑋)where
𝑋 has a standard normal distribution N(0, 1). We know that this expectation
is 0 as the distribution of 𝑋 is symmetric about 0 and sin(−𝑥) = − sin(𝑥).
We will compare the simple Monte Carlo estimator of the expectation
with estimates using control variates with the functions 𝑔1(𝑥) = 𝑥 and
𝑔2(𝑥) = 𝑥2 − 1. By using a Taylor expansion of sin(𝑥) at 𝑥 = 0 we have
sin(𝑥) ≈ 𝑥 for small 𝑥, and thus a simple choice of control variate is 𝑔1(𝑥).

We show pictorially the benefit of using this control variate in Figure
1.2, where we see that sin(𝑥) − 𝑥 ≈ 0 for most 𝑥 values sampled from the
standard normal distribution. This reduces the Monte Carlo variance of the
estimate of E [ℎ(𝑋)] by close to a factor of 2.

Care must be taken with control variates, however. For example, if we

1.1 Monte Carlo Methods 11

perform a Taylor expansion of sin(𝑥) at 𝑥 = 𝜋/2 we get sin(𝑥) ≈ 1 − (𝑥 −
𝜋/2)2/2, which suggests using −𝑔2(𝑥)/2 + 𝜋𝑔1(𝑥)/2 as a control variate.
However, this choice leads to an increase in the Monte Carlo variance by
over a factor of 3. Figure 1.2 shows that the function sin(𝑥)−𝜋𝑥/2+(𝑥2−1)/2
is roughly constant for 𝑥 ≈ 𝜋/2, but overall it is more variable across the
range 𝑥 ∈ [−2, 2], where most of the probability mass of N(0, 1) lies.

This example shows that the choice of 𝛾1, . . . , 𝛾𝐽 is important when
using control variates. In some situations, there may be a natural way of
choosing these – for example, based on a Taylor expansion of the function
of interest around the mode of the distribution of X. However, it is also
possible to choose these values based on simulation. Ideally, we would
choose 𝛾1, . . . , 𝛾𝐽 to minimise the Monte Carlo variance∫ {

ℎ(x) −
𝐽∑︁
𝑗=1

𝛾 𝑗𝑔 𝑗 (x)
}2

𝜋(x) dx − 𝐼2,

and we can obtain a Monte Carlo estimate of this. If x1, . . . , x𝑛 are realised
samples from 𝜋(·), then we can choose 𝛾1, . . . , 𝛾𝐽 to minimise

𝑛∑︁
𝑘=1

(
ℎ(x𝑘) −

𝐽∑︁
𝑗=1

𝛾 𝑗𝑔 𝑗 (x𝑘)
)2

,

which just involves minimising a sum of squares criterion. If we let h be
the 𝑛 × 1 vector whose 𝑖th entry is ℎ(x𝑖), 𝜸 be the 𝐽 × 1 vector whose 𝑖th
entry is 𝛾𝑖, and Z be the 𝑛 × 𝐽 matrix whose (𝑖, 𝑗)th entry is 𝑔 𝑗 (x𝑖), then,
assuming Z is of full rank, the least-squares estimate of 𝜸 is

�̂� = (Z⊤Z)−1Z⊤h.

These estimates �̂� depend on the Monte Carlo samples, and thus for the
Monte Carlo estimate of 𝐼 to be unbiased we need to use a new set of Monte
Carlo samples from X for estimating 𝐼 using the �̂�.

While we have presented the idea of control variates for estimating ex-
pectations of functions, similar ideas can be used with importance sampling
for estimating general integrals.

1.1.5 Monte Carlo Integration and Bayesian Statistics
One of the most important applications of Monte Carlo methods occurs
within Bayesian statistics. To explain why, consider the problem of making
inferences, from data, about the parameter of a statistical model. We will
use the notation D to denote data in general. In some situations, we will

12 Background

need to distinguish individual data points, and in those settings, we will
assumeD = {y1, . . . , y𝑁 }, with y𝑖 being the 𝑖th data point and 𝑁 being the
size of our dataset.

We further assume that we have a model for the data. Let the model
depend on a parameter 𝜽 , and denote the likelihood of the data under
our model by 𝐿 (𝜽;D). The likelihood is the probability, or probability
density, of observing data D under our model if the parameter is 𝜽 . In
Bayesian statistics, we represent beliefs, or uncertainty, about the parameter,
𝜽 , through probability distributions. Our beliefs about 𝜽 before seeing the
data are given by a prior, 𝜋0 (𝜽), and, once we observe data, Bayes’ Theorem
provides the update to the posterior distribution:

𝜋(𝜽 | D) ∝ 𝜋0 (𝜽) 𝐿 (𝜽;D) . (1.3)

Where it will not cause confusion, we may drop the explicit conditioning
on the data in the posterior, and write 𝜋(𝜽) rather than 𝜋(𝜽 | D).

Assuming the correctness of our model, the posterior distribution con-
tains all information about the parameter, 𝜽 , that can be logically deduced
from our prior belief and the dataset. From it, we can then obtain a point
estimate for 𝜽 , such as its posterior mean, and quantify uncertainty in terms
of the posterior probability of 𝜽 lying in a given set of values. However, in
most applications, the posterior distribution is intractable, meaning that it
cannot be explicitly calculated. The central challenge is that the posterior
density 𝜋(𝜽 | D) is known, via Bayes’ Theorem, only up to a normalising
constant.

The intractability of the posterior distribution is a key motivator for
Monte Carlo methods. If we can draw samples from 𝜋(𝜽 | D), then we
can obtain simple, and often accurate, Monte Carlo estimates of posterior
quantities of interest. Given realisations 𝜽1, . . . , 𝜽𝑛 sampled from 𝜋(𝜽 | D),
and a function ℎ(𝜽) whose expectation

𝐼 := E𝜋 [ℎ(𝜽)] =
∫

ℎ(𝜽)𝜋(𝜽 | D) d𝜽

is of interest, define

̂̀(𝑛)
ℎ

:=
1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝜽 𝑘). (1.4)

As mentioned earlier, for any function ℎ ∈ L1(𝜋), the strong law of large
numbers (1.1) tells us that we can estimate E𝜋 [ℎ(𝜽)] as accurately as
we desire using Monte Carlo integration, and provided enough samples

1.1 Monte Carlo Methods 13

are taken: ̂̀(𝑛)
ℎ
→ E𝜋 [ℎ(𝜽)] almost surely as 𝑛 → ∞. Moreover, if ℎ ∈

L2(𝜋) then the central limit theorem states that the Monte Carlo error,̂̀(𝑛)
ℎ
− E𝜋 [ℎ(𝜽)] is 𝑂 𝑝 (𝑛−1/2).

For example, the vector of posterior means can be estimated by

�̂� =
1
𝑛

𝑛∑︁
𝑘=1

𝜽 𝑘 ,

and the posterior probability of 𝜽 ∈ B for some set B can be estimated by
the proportion of Monte Carlo samples in B

P̂ (𝜽 ∈ B) = 1
𝑛

𝑛∑︁
𝑘=1

I {𝜽 𝑘 ∈ B} ,

where I {𝜽 𝑘 ∈ B} is the indicator function of the event 𝜽 𝑘 ∈ B.
The challenge with this Monte Carlo approach to Bayesian statistics is the

difficulty in sampling from 𝜋(𝜽), particularly if 𝜽 is high-dimensional. Of
the Monte Carlo integration methods we have mentioned so far, importance
sampling offers an alternative when we are unable to sample from 𝜋 directly.
Consider estimating the posterior expectation for some function ℎ(𝜽), so
ℎ(𝜽) = 𝜽 would give us the posterior mean of 𝜽 and ℎ(𝜽) = I {𝜽 ∈ B}
would give us the posterior probability of 𝜽 ∈ B. Let 𝑞(𝜽) be a proposal
distribution with the same support as the posterior. Then we have

E [ℎ(𝜽) | D] =
∫

ℎ(𝜽)𝜋(𝜽) d𝜽 =

∫
ℎ(𝜽)𝜋(𝜽)
𝑞(𝜽) 𝑞(𝜽) d𝜽 .

It is common to define weights 𝑤(𝜽) := 𝜋(𝜽)/𝑞(𝜽). Then given an indepen-
dent sample 𝜽1, . . . , 𝜽𝑛 from 𝑞(𝜽), we can estimate the posterior expectation
by the importance sampling estimator

1
𝑛

𝑛∑︁
𝑘=1

𝑤(𝜽 𝑘)ℎ(𝜽 𝑘).

There are two issues with this estimator. The first is that as we only know
the posterior up to a constant of proportionality, we only know the weights
up to a constant of proportionality. However, the constant of proportion-
ality can be estimated by setting ℎ(𝜽) = 1, whence E [ℎ(𝜽)] = 1 as the
expectation of a constant is the constant. Thus we can use the unnormalised
posterior density in the definition of the weights, and estimate the normal-
ising constant as (1/𝑛)∑𝑛

𝑘=1 𝑤(𝜽 𝑘). The posterior expectation of ℎ(𝜽) is
then estimated as

𝑛∑︁
𝑘=1

𝑤(𝜽 𝑘)∑𝑛
𝑗=1 𝑤(𝜽 𝑗)

ℎ(𝜽 𝑘),

14 Background

which requires knowing the posterior density only up to a constant of propor-
tionality. Often we define normalised weights𝑤∗(𝜽 𝑘) = 𝑤(𝜽 𝑘)/

∑𝑛
𝑗=1 𝑤(𝜽 𝑗),

and we can then view the weighted samples (𝜽 𝑘 , 𝑤∗(𝜽 𝑘)), for 𝑘 = 1, . . . , 𝑛,
as a discrete approximation to the posterior.

The second issue is that the Monte Carlo variances of our estimators
of posterior expectations depend on the variability of the weights. Often
this will be large if 𝜽 is high-dimensional. To see this, consider a toy
example where the posterior has independent components. Assume each
component is normal with mean 0 and variance 𝜎2, and the importance-
sampling proposal distribution is also independent over components, but
with a standard normal distribution, i.e., with mean zero and unit variance,
for each component. The importance sampling weight for a realisation
𝜽 = (\1, . . . , \𝑑) is

𝑤(𝜽) = 𝜎−𝑑 exp

{
𝜎2 − 1

2𝜎2

𝑑∑︁
𝑖=1

\2
𝑖

}
.

Now
∑𝑑
𝑖=1 \

2
𝑖 has a 𝜒2

𝑑
distribution under the proposal, and using the moment

generating function of a 𝜒2
𝑑

distribution, we obtain the Monte Carlo variance
of the weight:

var{𝑤(𝜽)} = 𝜎−𝑑
(
2 − 𝜎2)−𝑑/2 − 1.

Writing 𝜎2 = 1 + 𝜖 , for some 𝜖 > 0, this variance is (1/
√

1 − 𝜖2)𝑑 − 1,
which increases exponentially with 𝑑. The focus of Markov chain Monte
Carlo (MCMC) methods that we introduce in the next chapter is to produce
sampling algorithms that avoid this exponential curse of dimensionality.

1.2 Example Applications
In later chapters, we will demonstrate the Monte Carlo methods on some ex-
ample models which we now introduce. Whilst these models are somewhat
simple to describe, their posteriors exhibit many of the features of more
challenging posterior distributions, in particular, with respect to scalable
sampling.

1.2.1 Logistic Regression
Logistic regression models the relationship between a binary response and
a set of covariates. Denote the responses by 𝑦1, . . . , 𝑦𝑁 and the covariates
by 𝑑-dimensional vectors x1, . . . , x𝑁 . Then, logistic regression models the

1.2 Example Applications 15

data (the responses) as conditionally independent, given a 𝑑-dimensional
parameter 𝜽 and the covariates, and that

P
(
𝑌 = 𝑦 𝑗 |x 𝑗 , 𝜽

)
=

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽} .

An intercept term can be included in the model by setting the first coordinate
of each of x1, . . . , x𝑁 to be 1.

Our interest will be in sampling from the posterior distribution of 𝜽 . To
define the posterior, we need to specify a prior 𝜋0(𝜽), and we will assume
that our prior is Gaussian with mean 0 and variance 𝚺𝜽 . This leads to a
posterior distribution, 𝜋(𝜽 |D), which can be written succinctly up to a
multiplicative constant as

𝜋(𝜽 |D) ∝ exp
{
−1

2
𝜽⊤𝚺−1

𝜽 𝜽

} 𝑁∏
𝑗=1

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽} .

This is a canonical, albeit relatively simple, test problem for sampling
methodologies. When we consider sampling methods for this model, we
will drop the explicit conditioning on data D and use 𝜋(𝜽) to denote the
target distribution of the sampler. The samplers we consider will often use
gradient information about their target distribution, and we have

𝜕 log 𝜋(𝜽)
𝜕\𝑖

= −
[
𝜽⊤𝚺−1

𝜽

]
𝑖
+

𝑁∑︁
𝑗=1

𝑥
(𝑖)
𝑗

{
𝑦 𝑗 −

exp{x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽}

}
, (1.5)

where 𝑥 (𝑖)
𝑗

indicates the 𝑖th component of x 𝑗 .

1.2.2 Bayesian Matrix Factorisation
Bayesian matrix factorisation attempts to find a representation of a high-
dimensional matrix as the product of two lower-dimensional matrices. Con-
sider an 𝑛 × 𝑚 matrix Y, and let 𝜽 = {U,V} where U and V are 𝑛 × 𝑑
and 𝑑 × 𝑚 matrices respectively. Then the approximation is Y ≈ UV. If
𝑑 ≪ min{𝑚, 𝑛} then this can lead to a substantial reduction in dimen-
sion, and the model can be viewed as attempting to find low-dimensional
structure in Y.

The interpretation of this model is that each row of V is a factor, and we
aim to approximate each row of Y as a linear combination of these factors.
The entries in U are called factor loadings, and give the relative weight of
each factor for each row of Y.

16 Background

One common approach to fitting these models is to use a Gaussian
working model, thus up to additive constants, the log-likelihood is

𝐿 (𝜽;D) = −𝑛𝑚 log𝜎 − 1
2𝜎2

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑌𝑖, 𝑗 −

𝑑∑︁
𝑘=1

𝑈𝑖,𝑘𝑉𝑘, 𝑗

)2 ,
where 𝜎2 is the variance of the difference between entries of Y and UV. In
Bayesian matrix factorisation, we then introduce a prior on the parameters
U and V. Often, the prior for each entry is Gaussian, or is a mixture of a
Gaussian and a point-mass at zero, as this encourages sparsity in the factors
which potentially aids the interpretation of U and V. It is also possible to
introduce a prior over the number of factors, 𝑑, with the priors for the entries
of U and V potentially depending on 𝑑.

1.2.3 Bayesian Neural Networks for Classification
Artificial neural networks are a flexible and popular class of models used
in machine learning for solving supervised learning problems, such as
regression and classification tasks. In the case of classification, assume that
𝑦1, 𝑦2, . . . , 𝑦𝑁 are observed data, where each 𝑦 𝑗 represents one of𝐺 classes,
i.e. 𝑦 𝑗 ∈ {1, 2, . . . , 𝐺}. Assuming 𝑑−dimensional vectors x1, x2, . . . , x𝑁
for the covariates, then under a simple two-layer neural network model, the
probability of a particular class 𝑦 𝑗 is

P(𝑌 = 𝑦 𝑗 |x 𝑗 , 𝜽) ∝ exp(A⊤𝑦 𝑗𝜎(B
⊤x 𝑗 + b) + 𝑎𝑦 𝑗), (1.6)

where b is a 𝑑ℎ-dimensional vector, B is a 𝑑 × 𝑑ℎ matrix, with 𝑑ℎ the
dimension of the variables in the hidden layer. The function 𝜎 : R𝑑ℎ →
(0, 1)𝑑ℎ is a vector softmax function with 𝜎(z)𝑖 = exp(𝑧𝑖)/{

∑𝑑ℎ
𝑗=1 exp(𝑧 𝑗)}

for 𝑖 = 1, . . . , 𝑑ℎ. The notation A𝑖 refers to the 𝑖-th column of the 𝑑ℎ × 𝐺
matrix A. The parameters of the model 𝜽 = vec(a,A, b,B) are represented
by vectors a, b, commonly referred to as biases, and matrices A,B, which
are commonly referred to as weights.

Taking a Bayesian approach to parameter estimation, we can place inde-
pendent Gaussian priors on each of the elements of the biases and weights
in 𝜽 . Monte Carlo algorithms can be used to sample from the posterior,

𝜋(𝜽 |D) ∝ 𝜋0(𝜽)
𝑁∏
𝑗=1

P(𝑦 𝑗 |x 𝑗 , 𝜽). (1.7)

For Bayesian neural network models, the dataset sizes tend to be very

1.3 Markov Chains 17

large and approximating the posterior distribution requires Monte Carlo
methods which are scalable to large datasets. In Chapter 3, we will use
stochastic gradient Markov chain Monte Carlo algorithms to approximate
the Bayesian neural network posterior distribution.

1.3 Markov Chains
This section describes discrete-time Markov chains, focusing on the con-
cepts that will be required to understand the Markov chain Monte Carlo
method and its efficiency: the stationary distribution, reversibility, con-
vergence to the stationary distribution, ergodic averages, integrated auto-
correlation time and effective sample size.

Definition 1.1 A discrete-time Markov chain on a state space X is a
collection of random variables {𝑋𝑘}∞𝑘=0 with each 𝑋𝑘 ∈ X, such that for any
A ⊆ X,

P (𝑋𝑘+1 ∈ A | 𝑋𝑘 = 𝑥𝑘 , . . . , 𝑋0 = 𝑥0) = P (𝑋𝑘+1 ∈ A | 𝑋𝑘 = 𝑥𝑘) ; (1.8)

conditional on the current state, the distribution of the next state is inde-
pendent of all previous states.

In this chapter, we will only consider homogeneous Markov chains, where
the distribution of the next state given the current state does not depend on
the value of 𝑘 . Such a chain has a stationary distribution, a, if 𝑋𝑘 ∼ a =⇒
𝑋𝑘+1 ∼ a. If the chain also has a unique limiting distribution, then this must
be a since, by repeated induction, if 𝑋 𝑗 ∼ a then 𝑋𝑘 ∼ a for all 𝑘 > 𝑗 ,
including as 𝑘 →∞.

The following two examples of Markov chains on the vertices of an 𝑚-
sided polygon illustrate different ways that a chain can be stationary. We
label the vertices of the polygon from 0 to 𝑚 − 1, increasing in a clockwise
direction; thus, X = {0, 1, . . . , 𝑚 − 1}.

Example 1.2 (See Figure 1.3, left.) Let {𝑋𝑘}∞𝑘=0 be a Markov chain on the
vertices of an𝑚-sided polygon where the state at time 𝑘 +1 is obtained from
the state at time 𝑘 by moving to the next vertex in a clockwise direction. If
at time 𝑘 the chain is equally likely to be at each of the vertices, then this is
still the case at time 𝑘 +1. The stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚
for 𝑥 ∈ X.

Example 1.3 (See Figure 1.3, right.) Let {𝑋𝑘}∞𝑘=0 be a Markov chain on
the vertices of an 𝑛-sided polygon where the state at time 𝑘 + 1 is obtained
from the state at tim.e 𝑘 by performing one of the following moves, each of

18 Background

𝐴
𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
𝐴

𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
1/31/3

1/3

Figure 1.3 9-sided polygon where the Markov chain only moves
clockwise (left figure), as in Example 1.2 or moves either a
clockwise or anti-clockwise direction with probability 1/3 (right
figure), as in Example 1.3.

which has a probability of 1/3: move to the next vertex in an anti-clockwise
direction; do not move; move to the next vertex in a clockwise direction.
As with Example 1.2 the stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚 for
𝑥 ∈ X.

1.3.1 Reversible Markov chains
Example 1.2 has a clear flow in a clockwise direction and, because of this,
is an example of a non-reversible Markov chain; these will be discussed in
detail in Chapter 4. By contrast, in Example 1.3, consider any two adjacent
vertices: at stationarity, the probability of being at the first and moving to
the second is the same as the probability of being at the second and moving
to the first. Indeed, this is true of any pair of vertices, with the probability
being 0 if they are not adjacent. This is an example of a reversible Markov
chain.

Definition 1.4 A Markov chain {𝑋𝑘}∞𝑘=1 with a state space of X is re-
versible with respect to a distribution a when, for any two sets B, C ⊆ X,
if 𝑋𝑘 ∼ a then P (𝑋𝑘 ∈ B, 𝑋𝑘+1 ∈ C) = P (𝑋𝑘 ∈ C, 𝑋𝑘+1 ∈ B).

Consider the decomposition

P (𝑋𝑘 ∈ B, 𝑋𝑘+1 ∈ C) = P (𝑋𝑘 ∈ B) P (𝑋𝑘+1 ∈ C|𝑋𝑘 ∈ B) .

The first term on the right-hand side is the amount of probability mass in B
at time 𝑘 and the second term is the fraction of that mass which moves to C
at time 𝑘 +1, so the product is the amount of probability mass moving from
B to C. If the chain is reversible with respect to a and 𝑋𝑘 ∼ a, then this is

1.3 Markov Chains 19

also the amount of mass moving from C to B. Given this balance, referred
to as detailed balance, we would expect the total amount of probability
mass in any set to remain constant. Indeed, setting C = X in Definition 1.4,
we see that reversibility implies that if 𝑋𝑘 ∼ a, P (𝑋𝑘 ∈ B) = P (X𝑘+1 ∈ B).
Since this is also true for all B, 𝑋𝑘+1 ∼ a.

1.3.2 Convergence, Averages, and Variances
In Example 1.3, whatever the value or distribution of 𝑋0, as 𝑘 → ∞ the
distribution of 𝑋𝑘 converges to the stationary distribution. For simplicity
of presentation, we show this when 𝑚 = 2𝑚′ + 1 is odd. For all 𝑥0, 𝑥 ∈ X,
P (𝑋𝑚′ = 𝑥 |𝑋0 = 𝑥0) ≥ 1/3𝑚′ since it takes at most 𝑚′ moves in a single
direction to reach 𝑥, and if the chain arrives earlier, we include the proba-
bility of it staying at 𝑥 until time 𝑚′. Thus, the transition probability after
𝑚′ steps can be written as a mixture:

P (𝑋𝑚′ = 𝑥 |𝑋0 = 𝑥0) = 𝛿a(𝑥) + (1 − 𝛿)𝑞(𝑥 |𝑥0), (1.9)

for some conditional probability mass function 𝑞 and with 𝛿 = 𝑚/3𝑚′ . The
distribution at the start of a given iteration can always be thought of as a
mixture of a and some other distribution, where the mixture probability for
a could be 0. We can imagine that there is a hidden coin, and if it is showing
"heads" then the distribution of the chain is a. Since a is the stationary
distribution, if the coin is currently showing "heads" it will still be showing
heads after a further 𝑚′ moves. If the coin is showing "tails" then (1.9) tells
us that there is a probability of at least 𝛿 that it will be showing heads after
the next 𝑚′ moves. Equivalently, the mixture probability of the component
that is not a has been multiplied by 1 − 𝛿 or less. After 𝑘𝑚′ iterations, it is,
therefore at most (1 − 𝛿)𝑘 → 0 as 𝑘 →∞.

However, convergence to a stationary distribution does not occur for all
Markov chains. The chain in Example 1.2 is deterministic: if 𝑋0 = 0, then
𝑋𝑘𝑚 = 0 for all integers, 𝑘 . The following examples illustrate two further
cases.

Example 1.5 (See Figure 1.4.) Alter Example 1.3 so that the chain cannot
remain at its current vertex but must move either clockwise or anticlockwise
by a single vertex, each with a probability of 1/2. As with the Examples
1.2 and 1.3, the stationary distribution has P (𝑋𝑘 = 𝑥) = 1/𝑚 for 𝑥 ∈ X.

If 𝑛 is an even number, and 𝑋0 is even then the chain in Example 1.5 only
visits even-numbered states at even-numbered times, and odd-numbered

20 Background

𝐴
𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

𝐼
1/21/2

Figure 1.4 9-sided polygon with Markov transitions described in
Example 1.5.

states at odd-numbered times. Such chains are termed periodic and clearly
do not converge to their stationary distribution.

Example 1.6 Consider a Markov chain of the form in Example 1.3, but
on two separate 𝑚-sided polygons with no movement between the two. A
chain with separate regions between which there can be no movement is
termed reducible because it can be reduced to simpler component parts.

A reducible chain does not even have a single stationary distribution. In
Example 1.6 for any 𝛽 ∈ [0, 1] the distribution with probabilities 𝛽/𝑚 for
each vertex on the first polygon and (1− 𝛽)/𝑚 for each vertex on the second
polygon is stationary.

A chain which is not reducible is termed irreducible, and a chain which
is not periodic is termed aperiodic.

Ergodic Averages
The ergodic theorem for a Markov chain on a general state-space, X, states
that provided the chain satisfies natural generalisations of irreducibility and
aperiodicity, and has a proper stationary distribution, a, then as 𝑘 → ∞,
the distribution of 𝑋𝑘 converges to that stationary distribution. Furthermore,
subject to the same conditions, for any ℎ ∈ L1(a), samples from the Markov
chain satisfy a strong law of large numbers:

�̂�𝑛 (ℎ) :=
1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝑋𝑘) → Ea [ℎ(𝑋)] (1.10)

almost surely as 𝑛→∞.

Integrated Auto-Correlation Time and Effective Sample Size
Let us assume that 𝑋0 is, in fact, drawn from the stationary distribution.
Define 𝜎2

ℎ
:= Vara [ℎ(𝑋)] and assume 𝜎2

ℎ
< ∞. For 𝑘 ∈ {0, 1, 2, . . . }, the

1.3 Markov Chains 21

lag-𝑘 auto-correlation is 𝜌𝑘 := Cor [ℎ(𝑋0), ℎ(𝑋𝑘)] = Cor
[
ℎ(𝑋 𝑗), ℎ(𝑋 𝑗+𝑘)

]
since the Markov chain is time-homogeneous. If the 𝑋 𝑗 were independent
samples from a then 𝑛Var

[
�̂�𝑛 (ℎ)

]
= 𝜎2

ℎ
. For a stationary Markov chain

with
∞∑︁
𝑘=1

|𝜌𝑘 | < ∞, (1.11)

it holds that

lim
𝑛→∞

𝑛Var
[
�̂�𝑛 (ℎ)

]
= 𝜎2

ℎ IACTℎ, (1.12)

where

IACTℎ := 1 + 2
∞∑︁
𝑘=1

𝜌𝑘 , (1.13)

is the integrated auto-correlation time. To see why this is the case, firstly,
without loss of generality, take ℎ to have Ea [ℎ(𝑋)] = 0; if this is not
true initially, we subtract off the expectation: the variance properties are
unchanged. Then

𝑛Var
[
�̂�𝑛 (ℎ)

]
=

1
𝑛
E

[
𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

ℎ(𝑋 𝑗)ℎ(𝑋𝑘)
]
=
𝜎2
ℎ

𝑛

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜌 |𝑘− 𝑗 | . (1.14)

But
∑𝑛
𝑘=1

∑𝑛
𝑗=1 𝜌 |𝑘− 𝑗 | = 𝑛𝜌0 + 2

∑𝑛
𝑘=1(𝑛 − 𝑘)𝜌𝑘 , so

𝑛

𝜎2
ℎ

Var
[
�̂�𝑛 (ℎ)

]
= 1 + 2

𝑛∑︁
𝑘=1

(
1 − 𝑘

𝑛

)
𝜌𝑘 = 1 + 2

∞∑︁
𝑘=0

max
(
0, 1 − 𝑘

𝑛

)
𝜌𝑘 .

Given (1.11), the dominated converge theorem permits us to exchange the
ordering of the limit as 𝑛 → ∞ and the sum over 𝑘 , which provides the
limit (1.12).

The practical consequence of (1.12) is that, for finite 𝑛,

Var
[
�̂�ℎ

]
≈

𝜎2
ℎ

𝑛/IACTℎ
, (1.15)

the same as the variance if 𝑛/IACTℎ i.i.d. samples from a had been used. The
quantity 𝑛/IACTℎ is, therefore, known as the effective sample size. Since
they relate directly to the inverse variance of �̂�𝑛 (ℎ), effective sample size
and the inverse of the integrated auto-correlation time are useful measures
of the efficiency of a Markov chain for estimating Ea [ℎ(𝑋)].

22 Background

1.4 Stochastic Differential Equations
The Langevin stochastic differential equation is the basis for the Metropolis
Adjusted Langevin Algorithm (Section 2.1.4) and for stochastic gradient
Langevin methods (Chapter 3). It is also key to understanding the effi-
ciency of various Metropolis–Hastings algorithms when the dimension, 𝑑,
is high (see Chapter 2). We start with a heuristic introduction to stochastic
differential equations before considering a special case of the Langevin
diffusion known as the Ornstein–Uhlenbeck process and then moving onto
the general Langevin diffusion.

Consider a differential equation of the form

d𝑥𝑡
d𝑡

= 𝑎(𝑥𝑡 , 𝑡),

with a known initial value for 𝑥0. Discretising time leads to the simple Euler
approximation

𝛿𝑥𝑡 ≈ 𝑎(𝑥𝑡 , 𝑡)𝛿𝑡,

where 𝛿𝑥𝑡 = 𝑥𝑡+𝛿𝑡 − 𝑥𝑡 . Setting 𝛿𝑡 = 𝑇/𝑚, starting with 𝑥0, and recursively
applying the Euler update 𝑚 times leads to an approximation �̂�𝑇 , which
approaches the true value 𝑥𝑇 as 𝑚 →∞.

Instead of deterministic updates, we might wish to allow for the addition
of random noise with scale proportional to 𝑏(𝑥𝑡 , 𝑡). The initial value, 𝑋0,
may now be random and setting 𝛿𝑋𝑡 := 𝑋𝑡+𝛿𝑡 − 𝑋𝑡 leads to one possible
update

𝛿𝑋𝑡 ≈ 𝑎(𝑋𝑡 , 𝑡)𝛿𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝛿𝑡),

where the Gaussian noise terms 𝜖𝑡 are independent of all previous ran-
domness, and 𝑋𝑡 has become a random variable. A noise distribution of
the form N(0, 𝛿𝑡) is chosen because it is self-consistent. For example, with
𝑎(𝑋𝑡 , 𝑡) = 𝑎 and 𝑏(𝑥𝑡 , 𝑡) = 𝑏, after two time steps initialised at 𝑋0 = 𝑥0, we
have

𝑋2𝛿𝑡 ≈ 𝑥0 + 𝑎𝛿𝑡 + 𝑏𝜖𝛿𝑡 + 𝑎𝛿𝑡 + 𝑏𝜖2𝛿𝑡 = 𝑥0 + 2𝑎𝛿𝑡 + 𝑏𝜖2𝛿𝑡

where 𝜖2𝛿𝑡 ∼ N(0, 2𝛿𝑡), since the two noise terms 𝜖𝛿𝑡 , 𝜖2𝛿𝑡 are independent.
However, the right-hand side of this expression is exactly of the same form
we would get from a single time step of size 2𝛿𝑡 to obtain 𝑋2𝛿𝑡 from 𝑋0.

The process with 𝑎 = 0, 𝑏 = 1 and 𝑋0 = 0 consists of a sequence of mean-
zero Gaussian increments, each with a variance of 𝛿𝑡. This is a discretisation
of a process known as Brownian motion, which is often denoted by 𝑊𝑡 . In

1.4 Stochastic Differential Equations 23

particular, we have that

𝛿𝑊𝑡 = 𝑊𝑡+𝛿𝑡 −𝑊𝑡 ∼ N(0, 𝛿𝑡),

and 𝑊𝑡 ∼ N(0, 𝑡). From the definition of 𝑊𝑡 , we may rewrite the noisy
update as

𝛿𝑋𝑡 ≈ 𝑎(𝑋𝑡 , 𝑡)𝛿𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝛿𝑊𝑡 . (1.16)

Consider this process on some interval [0, 𝑇], with 𝛿𝑡 = 𝑇/𝑚 and 𝑋0 = 𝑥0,
for some initial value 𝑥0. Subject to some regularity conditions, the limit as
𝑚 →∞ exists and is written:

d𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡)d𝑡 + 𝑏(𝑋𝑡 , 𝑡)d𝑊𝑡 .

This is known as a stochastic differential equation (SDE), and (1.16) is the
Euler–Maruyama approximation to it. Subject to the initial condition, the
solution to this SDE is the stochastic process {𝑋𝑡 }𝑡 ∈[0,𝑇] obtained from the
limit 𝛿𝑡 → 0 of the discrete-time process defined through (1.16).

The above heuristic describes a one-dimensional SDE and its Euler–
Maruyama discretisation; however, it is straightforward to extend these to
higher dimensions with X𝑡 ∈ R𝑑 , a : R𝑑 × [0,∞) → R𝑑 , W𝑡 ∈ R𝑘 and the
𝑑 × 𝑘 matrix b : R𝑑 × [0,∞) → R𝑑𝑘 .

A stochastic process that satisfies an SDE is called a diffusion. For the
most part, we will deal with time-homogeneous diffusions, where 𝑎 and 𝑏
have no explicit time dependence; however, time-inhomogeneous diffusions
will be used in Chapter 3.

1.4.1 The Ornstein–Uhlenbeck Process
Consider the SDE

d𝑋𝑡 = −
1

2𝜎2 𝑏
2𝑋𝑡d𝑡 + 𝑏d𝑊𝑡 .

The Euler–Maruyama discretisation gives

𝑋𝑡+𝛿𝑡 ≈ 𝑋𝑡 + 𝛿𝑋𝑡 =
(
1 − 𝑏2

2𝜎2 𝛿𝑡

)
𝑋𝑡 + 𝑏𝛿𝑊𝑡 .

Since 𝛿𝑊𝑡 is Gaussian distributed and independent of 𝑋𝑡 , if 𝑋𝑡 is Gaussian so
is 𝑋𝑡+𝛿𝑡 . Moreover, if E [𝑋𝑡] = 0, then E [𝑋𝑡+𝛿𝑡] = 0. Finally, if Var [𝑋𝑡] =
𝜎2 then

Var [𝑋𝑡+𝛿𝑡] =
(
1 − 𝑏2

2𝜎2 𝛿𝑡

)2

𝜎2 + 𝑏2𝛿𝑡 = 𝜎2 + 1
4𝜎4 𝑏

4𝛿𝑡2.

24 Background

0 2 4 6 8 10
t

2

0

2

4

6

x

Figure 1.5 Three realisations of the Ornstein–Uhlenbeck
processes, all with 𝜎 = 1, and on the time interval [0, 10]. Other
parameter settings are 𝑥0 = 2, 𝑚 = 4 and 𝑏 = 3; 𝑥0 = 𝑚 = 0 and
𝑏 = 1; 𝑥0 = −2, 𝑚 = −4 and 𝑏 = 1/3.

In the limit 𝑚 → ∞, as the number of increments is increased, with
𝛿𝑡 = 𝑇/𝑚 ↓ 0, the term in 𝛿𝑡2 becomes irrelevant: the variance does not
change. Thus, if 𝑋0 ∼ N(0, 𝜎2) then 𝑋𝑡 ∼ N(0, 𝜎2) for all 𝑡 > 0; the SDE
is stationary. Shifting the coordinate system by 𝑚 we see that the slightly
more general SDE

d𝑋𝑡 = −
1

2𝜎2 𝑏
2(𝑋𝑡 − 𝑚)d𝑡 + 𝑏d𝑊𝑡 (1.17)

has a stationary distribution of N(𝑚, 𝜎2). The process arising from the SDE
(1.17) is known as the Ornstein–Uhlenbeck (OU) process. Substituting
𝑠 = 𝑏2𝑡, the SDE becomes d𝑋𝑠 = −(𝑋𝑠 − 𝑚)/(2𝜎2)d𝑠 + d𝑊𝑠, which
explains why 𝑏2 is termed the speed of the diffusion. Figure 1.5 presents
three realisations of OU processes with stationary distribution N(𝑚, 1) and
started from the corresponding 𝑚/2. Each diffusion has a different speed,
and the effect of this on the convergence to, and mixing within, the stationary
distribution is clearly visible.

1.4 Stochastic Differential Equations 25

1.4.2 The Infinitesimal Generator
The infinitesimal generator (or, simply, generator) of a continuous-time
stochastic process acts on a function ℎ of the process:

(Lℎ) (x) :=
𝜕

𝜕𝑡
E [ℎ(X𝑡) |X0 = x]

����
𝑡=0

= lim
𝛿𝑡↓0

E [ℎ(X𝛿𝑡)] − ℎ(x)
𝛿𝑡

. (1.18)

The set of functions for which the limit exists for all x is called the domain
of the infinitesimal generator. Subject to regularity conditions, this includes
the set of compactly supported functions with a second derivative that is
continuous, denoted 𝐶2

0 .
For processes defined by an SDE, we can gain some insight into their

generator by considering a Taylor expansion. For simplicity of presentation,
we consider 𝑥 ∈ R:

1
𝛿𝑡
E [ℎ(𝑋𝛿𝑡) − ℎ(𝑥)] =

1
𝛿𝑡
E

[
(𝑋𝛿𝑡 − 𝑥)ℎ′(𝑥) +

1
2
(𝑋𝛿𝑡 − 𝑥)2ℎ′′(𝑥) + . . .

]
.

The Euler–Maruyama approximation of the SDE is 𝑋𝛿𝑡 − 𝑥 ≈ 𝑎(𝑥)𝛿𝑡 +
𝑏(𝑥)𝛿𝑊𝑡 . Thus E [𝑋𝛿𝑡 − 𝑥] ≈ 𝑎(𝑥)𝛿𝑡 and E

[
(𝑋𝛿𝑡 − 𝑥)2

]
≈ 𝑏(𝑥)2𝛿𝑡 +

𝑎(𝑥)2 [𝛿𝑡]2, with all higher order expectations at most 𝑜(𝛿𝑡). Thus, we
might expect that

(Lℎ) (𝑥) = 𝑎(𝑥) dℎ
d𝑥
+ 1

2
𝑏(𝑥)2 d2ℎ

d𝑥2 ,

and this is indeed the case. For a multivariate diffusion, the generator is

(Lℎ) (x) =
𝑑∑︁
𝑖=1

𝑎𝑖
𝜕ℎ

𝜕𝑥𝑖

����
x
+ 1

2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑏𝑏⊤)𝑖, 𝑗
𝜕2ℎ

𝜕𝑥𝑖𝜕𝑥 𝑗

����
x
. (1.19)

Generators of diffusion processes are used in the next subsection to derive
the stationary density of two classes of diffusion that appear repeatedly in
Chapters 2 and 3. Generators of diffusions are also used in Chapter 6 for
the assessment and improvement of algorithms. Finally, Chapter 5 employs
the generators of another class of continuous-time stochastic processes to
determine the processes’ stationary distributions.

1.4.3 Langevin Diffusions
We now describe two classes of diffusion, the overdamped and underdamped
Langevin diffusions, where the stationary density forms an explicit part of
the SDE formulation.

26 Background

The Overdamped Langevin Diffusion
Consider a positive, differentiable density function 𝑓 (x) for x ∈ R𝑑 , and
the following SDE:

dX𝑡 =
1
2
∇ log 𝑓 (X𝑡)𝑏2d𝑡 + 𝑏dW𝑡 . (1.20)

A solution to this SDE is known as an overdamped Langevin diffusion. The
OU process (1.17) with 𝑓 (𝑥) = N(𝑥;𝑚, 1/𝑎) is a special case of this class of
diffusions, and in this case, as seen in Section 1.4.1, 𝑓 is the density of the
stationary process. In fact, this is true in general: the stationary density of the
overdamped Langevin diffusion (1.20) is 𝑓 . To see this in one dimension,
consider the infinitesimal generator of the diffusion:

(Lℎ) (𝑥) = 1
2
𝑏2 𝑓

′(𝑥)
𝑓 (𝑥) ℎ

′(𝑥) + 1
2
𝑏2ℎ′′(𝑥).

This is the rate of change of the expectation of ℎ(𝑋𝑡) at 𝑡 = 0, when started
from 𝑋0 = 𝑥. Suppose instead that 𝑋0 has a density of 𝑓 . Then, the rate
of change of the expectation of 𝑋𝑡 at 𝑡 = 0 can be calculated by taking
expectations with respect to 𝑋0. This is

1
2
𝑏2

∫ {
𝑓 ′(𝑥)
𝑓 (𝑥) ℎ

′(𝑥) + ℎ′′(𝑥)
}
𝑓 (𝑥) d𝑥 =

1
2
𝑏2

∫
{ 𝑓 (𝑥)ℎ′(𝑥)}′ d𝑥 = 0

for all sufficiently smooth ℎ with compact support. Thus, if 𝑋0 ∼ 𝑓 ,
d
d𝑡E [ℎ(𝑋𝑡)]

��
𝑡=0 = 0. This is true for all ℎ ∈ 𝐶2

0 , and so the distribution
of 𝑋𝑡 does not change as 𝑡 increases from 0. The distribution at time 0 must,
therefore, be the stationary distribution of the Langevin diffusion (1.20),
and 𝑓 is the corresponding stationary density.

When Langevin diffusions are employed in a Bayesian setting, 𝑓 (x) is of-
ten a posterior density whose normalising constant is, typically, intractable.
The fact that the calculation of∇ log 𝑓 (X𝑡) does not require this normalising
constant is crucial to the practical use of these diffusions.

The Underdamped Langevin Diffusion
The underdamped Langevin diffusion extends the state space to include a
velocity component, P𝑡 :

dX𝑡 = P𝑡d𝑡, (1.21)

dP𝑡 = −𝛾P𝑡d𝑡 + 𝑐∇ log 𝑓 (X𝑡)d𝑡 +
√︁

2𝛾𝑐 dW𝑡 (1.22)

1.4 Stochastic Differential Equations 27

Intuitively, dividing (1.22) through by 𝛾 and taking the limit as 𝛾 → ∞
and 𝑐 → ∞ with 𝑐/𝛾 = 𝑏2/2 fixed, we obtain the overdamped Langevin
diffusion, so the latter is a limiting case of the underdamped diffusion.

The underdamped Langevin diffusion targets 𝑓 (x)𝑔(p), where

𝑔(p) = 1
√

2𝜋𝑐
exp

(
− 1

2𝑐
∥p∥2

)
.

To see this we, again, restrict ourselves to the one-dimensional case to
simplify the presentation and, again, we start from the generator:

(Lℎ) (𝑥, 𝑝) = 𝑝ℎ𝑥 (𝑥, 𝑝) − 𝛾𝑝ℎ𝑝 (𝑥, 𝑝) + 𝑐
𝑓 ′(𝑥)
𝑓 (𝑥) ℎ𝑝 (𝑥, 𝑝) + 𝛾𝑐ℎ𝑝,𝑝 (𝑥, 𝑝),

where we have used subscripts to denote differentiation of ℎ with respect
to 𝑥 or 𝑝. The quantity (Lℎ) (𝑥, 𝑝) is the rate of change of the expectation
of ℎ(𝑋𝑡 , 𝑃𝑡) at 𝑡 = 0, when started at 𝑋0 = 𝑥 and 𝑃0 = 𝑝. Thus if 𝑋0 and
𝑃0 have respective densities of 𝑓 (𝑥) and 𝑔(𝑝), then the rate of change of
E [ℎ(𝑋𝑡 , 𝑃𝑡)] at 𝑡 = 0 is∬ {

𝑝ℎ𝑥 − 𝛾𝑝ℎ𝑝 + 𝑐
𝑓 ′(𝑥)
𝑓 (𝑥) ℎ𝑝 + 𝛾𝑐ℎ𝑝,𝑝

}
𝑓 (𝑥)𝑔(𝑝)d𝑝d𝑥.

In the manipulations that follow, we will twice use the fact that 𝑔′(𝑝) =
−𝑝𝑔(𝑝)/𝑐. Firstly, integration by parts gives∫

𝛾𝑐ℎ𝑝,𝑝𝑔(𝑝) d𝑝 =

∫
𝑝𝛾ℎ𝑝𝑔(𝑝) d𝑝,

so the second and fourth terms cancel. Secondly, two integrations by parts,
first with respect to 𝑝 and then with respect to 𝑥, give∬

𝑐 𝑓 ′(𝑥)ℎ𝑝𝑔(𝑝) d𝑝d𝑥 =
∬

𝑓 ′(𝑥)ℎ𝑝𝑔(𝑝) d𝑝d𝑥

= −
∬

𝑓 (𝑥)ℎ𝑥 𝑝𝑔(𝑝) d𝑝d𝑥,

so the first and third terms cancel. The argument is completed analogously
to that for the overdamped Langevin diffusion.

In Chapter 3, we explore further the overdamped and underdamped
Langevin diffusions as practical algorithms for scalable Monte Carlo in-
ference in the large-data setting and show that the discretisation of these
diffusion processes leads to important special cases of the general frame-
work for stochastic gradient MCMC algorithms.

28 Background

1.5 The Kernel Trick
Chapter 6 introduces the kernel Stein discrepancy and uses it to measure
the discrepancy between a sample of points and a distribution of interest.
Practical use of the methodology is made feasible by the ability to reduce
what appears to be an infinite amount of computation – maximising a quan-
tity over an uncountably infinite set of possible functions – to only a finite
number of arithmetic operations. The key mechanism for this simplification
is often called the kernel trick, and the setting for its use is a reproducing
kernel Hilbert space.

This section first explains the kernel trick in the more familiar setting
of a finite-dimensional inner-product space, before extending to the more
general setting required for Chapter 6. Whilst many of the concepts in-
troduced are much more general, our presentation focuses on the specific
setting of relevance: the vectors of our inner-product space are functions,
the associated field is R and the inner product is an integral with respect to
a probability distribution.

Throughout, 𝑓 (·), 𝑔(·) etc. are functions from X → R, where X is R𝑑
or some closed or open subset of R𝑑; 𝑓 (x), 𝑔(x) etc denote the function
evaluated at x ∈ X. The probability distribution a is assumed to have a
density a(x) on X.

1.5.1 Finite-Dimensional Inner Product Spaces
Let 0(·) be the function such that 0(x) = 0 for all x ∈ X. A set, V, of
functions from X → R is a vector space over R if the following axioms are
satisfied:

1. 0(·) ∈ V.
2. 𝑓 (·) ∈ V =⇒ − 𝑓 (·) ∈ V.
3. 𝑓 (·), 𝑔(·) ∈ V =⇒ 𝑓 (·) + 𝑔(·) ∈ V.
4. 𝑓 (·) ∈ V and 𝑎 ∈ R =⇒ 𝑎 𝑓 (·) ∈ V.

Aside: The associativity, commutativity and distributativity axioms of
a general vector space are satisfied automatically when the elements are
functions and from X to R and the field is R.

Every finite-dimensional vector space has a dimension, 𝑛, such that there
is a set of 𝑛 vectors {𝑏1(·), . . . , 𝑏𝑛 (·)} which satisfy two properties:

1. Linear independence: If there are 𝑎1, . . . , 𝑎𝑛 ∈ R such that
∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 (·) =

0 then 𝑎𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑛}.

1.5 The Kernel Trick 29

2. Spanning V: for each 𝑓 (·) ∈ V there are 𝑎1, . . . , 𝑎𝑛 ∈ R such that
𝑓 (·) = ∑𝑛

𝑖=1 𝑎𝑖𝑏𝑖 (·).

The set {𝑏1(·), . . . , 𝑏𝑛 (·)} is called a basis.

Example 1.7 It is straightforward to check that the set

V = { 𝑓 (·) : 𝑓 (𝑥) = 𝑐 sin(𝑥 + \) : 𝑐 ∈ R, \ ∈ [0, 2𝜋)}
= { 𝑓 (·) : 𝑓 (𝑥) = 𝑎 sin 𝑥 + 𝑏 cos 𝑥; 𝑎, 𝑏 ∈ R}

satisfies Axioms 1–4, whatever the domain, X ⊆ R. We may take 𝑏1(·) =
sin(·) and 𝑏2(·) = cos(·). However, we may also take 𝑏1(·) = sin(·)+3 cos(·)
and 𝑏2(·) = cos(·), for example.

For any vector space V of functions from X → R and any distribution
a with a probability density function on X of a(𝑥), we define the inner
product

⟨ 𝑓 (·), 𝑔(·)⟩a =
∫

𝑓 (x)𝑔(x)a(x) dx, (1.23)

where here and throughout this section, if the integral range is not specified
then it is X. We refer to this inner product as ⟨·, ·⟩a .

The inner product defined by (1.23) clearly satisfies two of the three
defining properties of an inner product: ⟨ 𝑓 (·), 𝑔(·)⟩ = ⟨𝑔(·), 𝑓 (·)⟩ and
⟨ 𝑓 (·) + 𝑔(·), ℎ(·)⟩ = ⟨ 𝑓 (·), ℎ(·)⟩ + ⟨𝑔(·), ℎ(·)⟩. However, we have only
that ⟨ 𝑓 (·), 𝑓 (·)⟩ = 0 ⇔ 𝑓 (x) = 0(x) a-almost everywhere, rather than
⟨ 𝑓 (·), 𝑓 (·)⟩ = 0 ⇔ 𝑓 (·) = 0(·). Each 𝑓 belongs to an equivalence class
of functions that are equal a-almost everywhere. This set of equivalence
classes forms a vector space and (1.23) defines an inner product on this
space, not on the space of functions,V. To keep the presentation in this sec-
tion as straightforward as possible our wording ignores this distinction, but
the more rigorous reader may wish to replace any vector space of functions
and inner product between these functions with the corresponding vector
space of equivalence classes of functions and inner products between these
equivalence classes.

The inner product provides a norm, called the induced norm, the square
of which is

∥ 𝑓 (·)∥2a = ⟨ 𝑓 (·), 𝑓 (·)⟩a =
∫

𝑓 (x)2a(x) dx.

Example 1.8 (Example 1.7 continued) Let X = [0, 2𝜋] and let a be the

30 Background

uniform distribution on [0, 2𝜋]. For any 𝑓 (·), 𝑔(·) ∈ V,

⟨ 𝑓 (·), 𝑔(·)⟩a =
1

2𝜋

∫ 2𝜋

0
𝑓 (𝑥)𝑔(𝑥) d𝑥 and ∥ 𝑓 (·)∥2a =

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑥)2 d𝑥.

Example 1.9 For a general vector spaceV of functions of the formX → R,
let Va be the elements of V which have a finite norm induced by a:

Va =

{
𝑓 (·) ∈ V :

∫
𝑓 (x)2a(x) dx < ∞

}
.

ThenVa is also a vector space, since Axioms 1, 2 and 4 are satisfied trivially,
and Axiom 3 is satisfied since for any 𝑓 (·), 𝑔(·) ∈ Va ,

∥ 𝑓 (·) + 𝑔(·)∥2a = ⟨ 𝑓 (·) + 𝑔(·), 𝑓 (·) + 𝑔(·)⟩a
= ∥ 𝑓 (·)∥2a + 2 ⟨ 𝑓 (·), 𝑔(·)⟩a + ∥𝑔(·)∥2a
≤ ∥ 𝑓 (·)∥2a + 2∥ 𝑓 (·)∥a ∥𝑔(·)∥a + ∥𝑔(·)∥2a < ∞,

where the third line uses the Cauchy–Schwarz inequality, which, in this case,
is the familiar inequality E [𝑓 (X)𝑔(X)]2 ≤ E[𝑓 (X)2]E

[
𝑔(X)2

]
, where X

has a density a on X.

Henceforth, for narrative simplicity, we will assume that V is a finite-
dimensional vector space with dimension 𝑛. Section 1.5.4 extends the nar-
rative to potentially infinite-dimensional spaces.

When considering the inner product ⟨·, ·⟩a , two vectors 𝑓 (·), 𝑔(·) ∈
V are said to be orthogonal if ⟨ 𝑓 (·), 𝑔(·)⟩a = 0 and the basis vectors,
𝑒1(·), . . . , 𝑒𝑛 (·) are said to be orthonormal if they are orthogonal and each
has a norm of 1: for each 𝑗 , 𝑘 ∈ {1, . . . , 𝑛},

∥𝑒 𝑗 (·)∥a = 1 and ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩a = 0

whenever 𝑗 ≠ 𝑘 . We will reserve the symbols {𝑒𝑘 (·)}𝑛𝑘=1 for any set of 𝑛
orthonormal basis functions.

The representation of 𝑓 (·) in terms of an orthonormal basis

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·)

is termed an orthonormal decomposition of 𝑓 (·). Since the 𝑒𝑖 (·) are or-
thonormal, the projection of 𝑓 (·) onto 𝑒𝑘 (·) is 𝑓𝑘:

⟨ 𝑓 (·), 𝑒𝑘 (·)⟩a =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·), 𝑒𝑘 (·)
〉
a

=

𝑛∑︁
𝑗=1

𝑓 𝑗 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩a

= 𝑓𝑘 . (1.24)

1.5 The Kernel Trick 31

Furthermore, the squared norm of 𝑓 (·) is the sum of the squares of the
orthonormal projections:

∥ 𝑓 (·)∥2 =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉
=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑓 𝑗 𝑓𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩

=

𝑛∑︁
𝑗=1

𝑓 2
𝑗 . (1.25)

Example 1.10 In Example 1.7, since
∫ 2𝜋

0 sin2 𝑥 d𝑥 =
∫ 2𝜋

0 cos2 𝑥 d𝑥 = 𝜋

and
∫ 2𝜋

0 sin 𝑥 cos 𝑥 d𝑥 = 0,

𝑒1(·) =
√

2 sin(·) and 𝑒2(·) =
√

2 cos(·)

form an orthonormal basis for V when a is the uniform distribution on
[0, 2𝜋]. Any function 𝑓 (·) ∈ V can be written as 𝑓 (·) = 𝑓1𝑒1(·) + 𝑓2𝑒2(·).
For example set

𝑓 (𝑥) = sin(𝑥 + 𝜋/6) =
√

3
2

sin 𝑥 + 1
2

cos 𝑥. (1.26)

So 𝑓1 =
√

3/(2
√

2) and 𝑓2 = 1/(2
√

2). Also

∥ 𝑓 (·)∥2a = 𝑓 2
1 + 𝑓 2

2 =
3
8
+ 1

8
=

1
2
=

1
2𝜋

∫ 2𝜋

0
sin2(𝑥 + 𝜋/6) d𝑥.

1.5.2 Kernels in a Finite-Dimensional Inner Product Space
As in the previous subsection, let V be an 𝑛-dimensional vector space of
functions from X to R and let a be a probability distribution on X with a
probability density of a(x), x ∈ X. Finally, let {𝑒𝑘 (·)}𝑛𝑘=1 be a set of basis
functions which is orthonormal with respect to the inner product (1.23).

Let _1, . . . , _𝑛 be a set of non-negative scalars and consider the following
real-valued function on X × X:

k(x, y) =
𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x)𝑒 𝑗 (y). (1.27)

Clearly, k(·, ·) is symmetric: k(y, x) = k(x, y). Moreover, k(·, ·) is positive

32 Background

semidefinite: for any finite 𝐽 < ∞, 𝑐1, . . . , 𝑐𝐽 ∈ R and x1, . . . x𝐽 ∈ R𝑑 ,
𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘k(x 𝑗 , x𝑘) =
𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘

𝑛∑︁
𝑙=1

_𝑙𝑒𝑙 (x 𝑗)𝑒𝑙 (x𝑘)

=

𝑛∑︁
𝑙=1

_𝑙

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘𝑒𝑙 (x 𝑗)𝑒𝑙 (x𝑘)

=

𝑛∑︁
𝑙=1

_𝑙

{
𝐽∑︁
𝑗=1

𝑐 𝑗𝑒𝑙 (x 𝑗)
}2

≥ 0.

Any function k(·, ·) : X × X → R which is both symmetric and positive
semidefinite is called a kernel.

Example 1.11 Continuing Example 1.7, let k : [0, 2𝜋] × [0, 2𝜋] → R be

k(𝑥, 𝑦) = 1
2
𝑒1(𝑥)𝑒1(𝑦) +

3
2
𝑒2(𝑥)𝑒2(𝑦) = sin 𝑥 sin 𝑦 + 3 cos 𝑥 cos 𝑦

= 2 cos(𝑦 − 𝑥) + cos(𝑦 + 𝑥).

This is symmetric and positive definite by construction.

Given the definition of k(·, ·) in (1.27), define

k(x, ·) =
𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·), (1.28)

and k(·, x) = k(x, ·). Since 𝑒 𝑗 (x) ∈ R, k(x, ·) ∈ V. Furthermore, for 𝑓 (·) ∈
V define the operator 𝑇k via

𝑇k 𝑓 (·) =
∫

k(·, y) 𝑓 (y)a(y) dy. (1.29)

Then 𝑇k is a linear operator, since for any 𝑎, 𝑏 ∈ R and 𝑓 (·), 𝑔(·) ∈ V,

𝑇k {𝑎 𝑓 (·) + 𝑏𝑔(·)} = 𝑎𝑇k 𝑓 (·) + 𝑏𝑇k𝑔(·).

Now, writing 𝑓 (·) = ∑𝑛
𝑘=1 𝑓𝑘𝑒𝑘 (·),

(𝑇k 𝑓 (·)) (x) =
∫

k(x, y) 𝑓 (y)a(y)dy

= ⟨k(x, ·), 𝑓 (·)⟩a =
〈
𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉
a

=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

_ 𝑗𝑒 𝑗 (x) 𝑓𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩a =
𝑛∑︁
𝑘=1

_𝑘 𝑓𝑘𝑒𝑘 (x).

1.5 The Kernel Trick 33

So 𝑇k 𝑓 (·) =
∑𝑛
𝑘=1 _𝑘 𝑓𝑘𝑒𝑘 (·) and, hence, 𝑇k 𝑓 (·) ∈ V, too. Moreover, con-

sidering 𝑓 (·) = 𝑒 𝑗 (·), we see that 𝑇k𝑒 𝑗 (·) = _ 𝑗𝑒 𝑗 (·); each 𝑒 𝑗 (·) is an
eigenfunction of 𝑇k with a corresponding eigenvalue of _ 𝑗 .

Example 1.12 Continuing Example 1.7, with the kernel from Example
1.11,

k(𝑥, ·) = sin 𝑥 sin(·) + 3 cos 𝑥 cos(·) = 2 cos(· − 𝑥) + cos(· + 𝑥).

Let 𝑓 (·) be as defined in (1.26). Then, using the definite integrals at the
start of Example 1.10,

𝑇k 𝑓 (·) =
1

2𝜋

∫ 2𝜋

0
{sin(·) sin 𝑦 + 3 cos(·) cos 𝑦}

{√
3

2
sin 𝑦 + 1

2
cos 𝑦

}
d𝑦

=
1

4𝜋

∫ 2𝜋

0

√
3 sin(·) sin2 𝑦 + 3 cos(·) cos2 𝑦 d𝑦

=
1
4

{√
3 sin(·) + 3 cos(·)

}
.

Since

𝑒1(·) =
√

2 sin(·), 𝑒2(·) =
√

2 cos(·), 𝑓1 =
√

3
2
√

2
, 𝑓2 =

1
2
√

2
,

_1 = 1/2 and _2 = 3/2, 𝑇k 𝑓 (·) is, therefore,

_1 𝑓1𝑒1(·) + _2 𝑓2𝑒2(·),

as we would hope.

1.5.3 A New Inner Product and the Kernel Trick in Finite
Dimensions

Let {𝑒 𝑗 (·)}𝑛𝑗=1 be an orthonormal basis for V and let k be defined through
(1.27) with respect to this basis. For 𝑓 (·), 𝑔(·) ∈ V with

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·) and 𝑔(·) =
𝑛∑︁
𝑗=1

𝑔 𝑗𝑒 𝑗 (·), (1.30)

34 Background

the inner product with respect to a is the sum of the products of the orthog-
onal projections:

⟨ 𝑓 (·), 𝑔(·)⟩a =
〈
𝑛∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑔𝑘𝑒𝑘 (·)
〉
a

=

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑓 𝑗𝑔𝑘 ⟨𝑒 𝑗 (·), 𝑒𝑘 (·)⟩a

=

𝑛∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗 .

We now define a new inner product

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑛∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗

_ 𝑗
, (1.31)

where the {_ 𝑗}𝑛𝑗=1, are exactly those from the definition of k and are the
eigenvalues of the operator 𝑇k.

This inner product may be rephrased in terms of a set of eigenfunc-
tions which are orthonormal with respect to ⟨·, ·⟩k: {𝑒′𝑗 (·)}𝑛𝑗=1 with 𝑒′𝑗 (·) =√︁
_ 𝑗𝑒 𝑗 (·). With respect to this basis, the vector

𝑓 (·) =
𝑛∑︁
𝑗=1

𝑓 ′𝑗 𝑒
′
𝑗 (·)

with 𝑓 ′𝑗 = 𝑓 𝑗/
√︁
_ 𝑗 . Using an analogous decomposition for 𝑔(·),

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑛∑︁
𝑗=1

𝑓 ′𝑗 𝑔
′
𝑗 ,

as expected. Finally,

k(x, y) =
𝑛∑︁
𝑗=1

𝑒′𝑗 (x)𝑒′𝑗 (y).

Example 1.13 In Example 1.11, 𝑒′1(·) = sin(·) and 𝑒′2(·) =
√

3 cos(·).
Clearly,

k(𝑥, 𝑦) = sin 𝑥 sin 𝑦 + 3 cos 𝑥 cos 𝑦 = 𝑒′1(𝑥)𝑒′1(𝑦) + 𝑒′2(𝑥)𝑒′2(𝑦).

For 𝑓 (·) as in Example 1.26,

𝑓 (·) =
√

3
2

sin(·) + 1
2

cos(·) =
√

3
2

sin(·) +
√

3
6
√

3 cos(·),

1.5 The Kernel Trick 35

so 𝑓 ′1 =
√

3/2 and 𝑓 ′2 =
√

3/6. Thus

∥ 𝑓 (·)∥2k =
3
4
+ 3

36
=

5
6
.

The Kernel Trick
From the definition (1.28) and with 𝑓 (·) decomposed as in (1.30),

⟨k(x, ·), 𝑓 (·)⟩k =
〈
𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x)𝑒 𝑗 (·),
𝑛∑︁
𝑘=1

𝑓𝑘𝑒𝑘 (·)
〉

k

=

𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x) 𝑓 𝑗
_ 𝑗

= 𝑓 (x). (1.32)

Moreover, choosing 𝑓 (·) to be k(y, ·), 𝑓 𝑗 = _ 𝑗𝑒 𝑗 (y) from (1.28), and, hence,

⟨k(x, ·), k(y, ·)⟩k =
𝑛∑︁
𝑗=1

_ 𝑗𝑒 𝑗 (x)𝑒 𝑗 (y) = k(x, y). (1.33)

Together, (1.32) and (1.33) enable the evaluation of inner products in ⟨·, ·⟩k
without needing to know the original basis functions 𝑒1(·), . . . , 𝑒𝑛 (·) nor
the associated values _1, . . . , _𝑛. Indeed, we do not even need to know a.
This is known as the kernel trick, and we will exemplify its use in Section
1.5.5. First, we generalise to a much broader class of kernels.

1.5.4 General Kernels
In Section 1.5.2 we created a kernel via (1.27) using a known orthonormal
basis for the inner-product space V, with the inner product specifed by
(1.23) according to the density a. However, a kernel is any positive-definite
symmetric function and we are interested in kernels k : X × X → R.

Example 1.14 The Gaussian kernel is

k(x, y) = exp
(
−∥y − x∥2

)
,

where ∥ · ∥ represents the standard Euclidean norm. This is clearly symmet-
ric. To see that k is also positive semidefinite on X = R𝑑 , note that

Z ∼ N𝑑
(
x,

1
4

I𝑑
)

and Y|Z ∼ N𝑑
(
Z,

1
4

I𝑑
)

=⇒ Y ∼ N𝑑
(
x,

1
2

I𝑑
)
,

from which

exp
(
−∥y − x∥2

)
= 𝛾

∫
exp

(
−2∥y − z∥2

)
exp

(
−2∥x − z∥2

)
dz,

36 Background

where 𝛾 = 2𝑑/𝜋𝑑/2. Hence
∑𝐽
𝑗=1

∑𝐽
𝑘=1 𝑐 𝑗𝑐𝑘k(x 𝑗 , x𝑘) is

𝛾

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘

∫
exp

(
−2∥x 𝑗 − z∥2

)
exp

(
−2∥x𝑘 − z∥2

)
dz

= 𝛾

∫ 𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1

𝑐 𝑗𝑐𝑘 exp
(
−2∥x 𝑗 − z∥2

)
exp

(
−2∥x𝑘 − z∥2

)
dz

= 𝛾

∫ {
𝐽∑︁
𝑗=1

𝑐 𝑗 exp
(
−2∥x 𝑗 − z∥2

)}2

dz

≥ 0.

When specifying k in Example 1.14, we have not specified a vector
space, nor a density a, nor an associated inner product. However, since k is
a kernel, we might hope that if we do specify a and the inner product ⟨·, ·⟩a
in (1.23), then there might be a vector space with a basis that is orthonormal
with respect to ⟨·, ·⟩a such that k has the decomposition (1.27). If this were
the case then we would know that there was a new inner product ⟨·, ·⟩k such
that (1.32) and (1.33) held. Hence we could evaluate inner products with
respect to k without knowing the basis itself nor the eigenvalues of 𝑇k, nor,
even, the details about a.

The decomposition in (1.23) does not hold in general, but Mercer’s
Theorem and generalisations of it tell us that an analogous decomposition
but with 𝑛 potentially infinite holds widely.

Specifically, let X be R𝑑 or a closed or open subset of R𝑑 , k(·, ·) :
X × X → R be a kernel and a(x), x ∈ X, be a probability density on X.
Then, provided k(x, y) is a continuous function of x and y, and∫

k(x, y)2a(y) dy < ∞ for all x ∈ X, (1.34)

the linear operator 𝑇k defined in (1.29) has at most countably many positive
(and no negative) eigenvalues_1, _2, . . . with corresponding eigenfunctions
𝑒1(·), 𝑒2(·), . . . which are orthonormal with respect to the inner product
⟨·, ·⟩a defined in (1.23). Furthermore, k can be decomposed as

k(x, y) =
∞∑︁
𝑗=1

_𝑘𝑒 𝑗 (x)𝑒 𝑗 (y)

and the set {
√︁
_ 𝑗𝑒 𝑗 (·)}∞𝑗=1 forms an orthonormal basis with respect to the

1.5 The Kernel Trick 37

inner product

⟨ 𝑓 (·), 𝑔(·)⟩k =
∞∑︁
𝑗=1

𝑓 𝑗𝑔 𝑗

_ 𝑗
,

where

𝑓 (·) =
∞∑︁
𝑗=1

𝑓 𝑗𝑒 𝑗 (·) and 𝑔(·) =
∞∑︁
𝑗=1

𝑔 𝑗𝑒 𝑗 (·). (1.35)

The space in which 𝑒1(·), 𝑒2(·), . . . lie is a generalisation of the vector
space of Example 1.9 to the Hilbert space,Ha , of functions 𝑓 (·) : X → R
with the inner product ⟨·, ·⟩a and such that ∥ 𝑓 (·)∥2a =

∫
𝑓 (x)2a(x) dx < ∞.

Likewise the orthonormal basis {
√︁
_ 𝑗𝑒 𝑗 (·)}∞𝑗=1 lies in the reproducing kernel

Hilbert space, Hk, of functions with the inner product ⟨·, ·⟩k and such
that ∥ 𝑓 (·)∥k < ∞. A Hilbert space H is an inner product space with
a potentially infinite set of basis vectors that is complete; informally, it
contains no "holes", so that for any sequence 𝑓1, 𝑓2, . . . with

∑∞
𝑗=1 𝑓

2
𝑗 < ∞

then (consideringHk, for example) 𝑓 (·) = lim𝑛→∞
∑𝑛
𝑗=1 𝑓 𝑗𝑒

′
𝑗 (·) exists, with

distance measured through the norm induced by the inner product, and is
inHk.

Thus, the simplifications of the inner products in (1.32) and (1.33) con-
tinue to hold; in general, the intermediate steps must replace 𝑛 with∞.

Example 1.15 For the Gaussian kernel of Example 1.14, k(x, ·) = exp(−∥x−
·∥2) and 〈

exp(−∥x − ·∥2), exp(−∥y − ·∥2)
〉

k = exp(−∥y − x∥2).

Also, for any 𝑓 (·) ∈ Hk,〈
exp(−∥x − ·∥2), 𝑓 (·)

〉
k = 𝑓 (x).

Trace-Class Kernels
A kernel where

∫
k(x, x)a(x) dx = 𝑐 < ∞ is referred to as trace class. This

property has important consequences for the set of eigenvalues, _1, _2, . . . ,
of 𝑇k, since∫

k(x, x)a(x) dx =

∫ ∞∑︁
𝑘=1

_𝑘𝑒𝑘 (x)𝑒𝑘 (x)a(x) dx

=

∞∑︁
𝑘=1

_𝑘

∫
𝑒𝑘 (x)2a(x) dx =

∞∑︁
𝑘=1

_𝑘 .

Thus
∑∞
𝑘=1 _𝑘 = 𝑐. Since each _𝑘 ≥ 0, we have lim𝑘→∞ _𝑘 = 0.

38 Background

The Gaussian kernel of Example 1.14 is trace class with 𝑐 = 1 since
k(x, x) = 1 for all x ∈ R𝑑 . The kernel we will meet in in Chapter 6 is also
of trace class, following a similar reasoning.

Without loss of generality, we label the eigenvalues _1, _2 . . . in order of
decreasing size (choosing any one of the possibilities if some of the _ 𝑗 are
not unique). With the decomposition of 𝑓 (·) in (1.35),

∥ 𝑓 (·)∥2k =
∞∑︁
𝑗=1

𝑓 2
𝑗

_ 𝑗
≥ 1
_1

∞∑︁
𝑗=1

𝑓 2
𝑗 =

1
_1
∥ 𝑓 (·)∥2a .

Thus ∥ 𝑓 (·)∥k < ∞ =⇒ ∥ 𝑓 (·)∥a < ∞ and henceHk ⊆ Ha . In general,Hk

is strictly smaller thanHa and the more quickly the eigenvalues of 𝑇k decay
the smaller the spaceHk.

1.5.5 The Power of the Kernel Trick
Suppose we have values x1, . . . , x𝑚 ∈ X and we are interested in

V∗ =

{
𝑔(·) : 𝑔(·) =

𝑚∑︁
𝑗=1

𝑔 𝑗k(x 𝑗 , ·), 𝑔1, . . . , 𝑔𝑚 ∈ R
}
.

Firstly, for any 𝑔(·) = ∑𝑚
𝑗=1 𝑔 𝑗k(x 𝑗 , ·),

∥𝑔(·)∥2k =
〈
𝑚∑︁
𝑗=1

𝑔 𝑗k(x 𝑗 , ·),
𝑚∑︁
𝑘=1

𝑔𝑘k(x𝑘 , ·)
〉

k

=

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑔 𝑗 ⟨k(x 𝑗 , ·), k(x𝑘 , ·⟩ 𝑔𝑘

=

𝑚∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑔 𝑗k(x 𝑗 , x𝑘)𝑔𝑘 < ∞. (1.36)

So, V∗ ⊆ Hk. Secondly, for any 𝑓 (·) ∈ Hk,

⟨ 𝑓 (·), 𝑔(·)⟩k =
𝑚∑︁
𝑗=1

𝑔 𝑗 ⟨ 𝑓 (·), k(x 𝑗 , ·)⟩k =
𝑚∑︁
𝑗=1

𝑔 𝑗 𝑓 (x 𝑗). (1.37)

Suppose there is a particular function of interest, 𝑓 (·) ∈ Hk, and we
would like to construct the function 𝑔(·) ∈ V∗ that most closely resembles
𝑓 (·) in shape. We could find the unit vector in V∗ which has the largest
component in the 𝑓 (·) direction:

�̂�(·) = arg max
𝑔 (·) ∈V∗:∥𝑔 (·) ∥=1

⟨ 𝑓 (·), 𝑔(·)⟩k .

The size of the inner product, ⟨ 𝑓 (·), �̂�(·)⟩k, is a measure of the ability of V∗
to represent 𝑓 (·).

1.5 The Kernel Trick 39

Define f = [𝑓 (x1), . . . , 𝑓 (x𝑚)]⊤ and g = [𝑔1, . . . 𝑔𝑚]⊤ and let K be the
matrix with elements 𝐾𝑖, 𝑗 = k(x𝑖, x 𝑗). Then (1.36) and (1.37) become

⟨ 𝑓 (·), 𝑔(·)⟩k = g⊤f and ∥𝑔(·)∥2k = g⊤Kg.

To find �̂�(·) we must find the vector ĝ that maximises g⊤f subject to g⊤Kg =

1.
Let A be a square matrix such that AA⊤ = K and set h = A⊤g. Then,

equivalently, we wish to maximise h⊤A−1f such that ∥h∥ = 1. We must find
the unit 𝑚-vector with the largest component in the A−1f direction, which
is

ĥ =
A−1f√︁

(A−1f)⊤A−1f
=⇒ ĝ =

A−⊤A−1f
√

f⊤A−⊤A−1f
=

K−1f
√

f⊤K−1f
,

since ĝ = A−⊤ĥ. The inner product ĝ⊤f is

f⊤K−1f
√

f⊤K−1f
=
√

f⊤K−1f.

This calculation only requires us to be able to evaluate 𝑓 (x 𝑗) and k(x 𝑗 , x𝑘)
for 𝑗 , 𝑘 = 1, . . . , 𝑚. We do not need to know the eigenfunctions 𝑒1(·), . . .
nor eigenvalues _1, . . . of 𝑇k. Indeed, we do not even need to know a; only
that (1.34) is satisfied.

Example 1.16 Let X = R and let k be the one-dimensional case of
the Gaussian kernel in Example 1.14. We find the approximations to the
function

𝑓 (𝑥) = 1
1 + 𝑥2 ,

using gradually more and more kernel functions k(𝑥 𝑗 , 𝑥). For points, 𝑥1, . . . , 𝑥𝐽 ,
K is the matrix with elements 𝐾𝑖, 𝑗 = exp[−(𝑥𝑖 − 𝑥 𝑗)2], and f is the vec-
tor with 𝑓 𝑗 = 𝑓 (𝑥 𝑗). We set (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) = (−3, . . . , 3) and
approximate 𝑓 (𝑥) using just 𝑥1 then 𝑥1, . . . , 𝑥3, then 𝑥1, . . . , 𝑥5 and finally
𝑥1, . . . , 𝑥7. Figure 1.6 compares the four approximations with the truth.
Each time new points are added to the set, the approximation improves, but
it matters where the points are added; some basis vectors are more helpful
than others.

40 Background

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

fu
nc

tio
n

T
A
B
C
D

Figure 1.6 The function 𝑓 (𝑥) = 1/(1 + 𝑥2) (T) and kernel-based
approximations to 𝑓 (𝑥) from Example 1.16. Curves use A:
𝑥 = −3, B: 𝑥 = −3,−2,−1, C: 𝑥 = −3, . . . , 1 and D: 𝑥 = −3, . . . , 3.

1.6 Chapter Notes

There are many texts which cover the introductory material from this chapter
in more depth and rigour than we have allowed; we suggest a few on each
topic.

Basic Monte Carlo and importance sampling is covered in Ripley (2009)
and Rubinstein and Kroese (2008). For an introduction to Bayesian statistics
and the use of Monte Carlo methods for Bayesian analysis, see Bernardo
and Smith (2009), Robert (2007) and Robert and Casella (1999).

Norris (1998) provides a gentle introduction to Markov chains on discrete
state spaces, while Meyn and Tweedie (2012) gives a thorough treatment on
general state spaces; a less thorough but more readily accessible treatment
for general state spaces is given in Roberts and Rosenthal (2004). Geyer
(1992) describes methods for estimating the integrated auto-correlation
time from a sample of the chain when the Markov chain is reversible; for
the non-reversible chains of Chapter 4 the integrated auto-correlation can be
estimated by fitting an auto-regressive process to the time series {ℎ(𝑋𝑘)}𝑛𝑘=1

1.6 Chapter Notes 41

or by estimating the spectral density of the series at a frequency of 0 (e.g.
Heidelberger and Welch, 1981).

Stochastic differential equations and diffusions are the subject of Ok-
sendal (2013), Rogers and Williams (2000a) and Rogers and Williams
(2000b). An alternative to simple Monte Carlo, which attempts to obtain
better convergence rates with the Monte Carlo sample size 𝑛, is quasi-Monte
Carlo. See, for example, Caflisch (1998) for an introduction and L’Ecuyer
and Lemieux (2002) for work on randomised quasi-Monte Carlo.

Chapter 1 of Conway (2010) introduces Hilbert spaces in general, and
kernels and reproducing kernel Hilbert spaces are covered in Chapter 6 of
Rasmussen and Williams (2005). Mercer’s Theorem is usually stated for a
compact X; we have used the generalisation to non-compact spaces in Sun
(2005).

2

Reversible MCMC and its Scaling

Building on the introductions to Bayesian statistics, Monte Carlo methods
and Markov chains in Chapter 1, this section introduces Markov chain
Monte Carlo algorithms as a generic computational solution to the challenge
of using Monte Carlo methods to sample from the posterior distribution and,
hence, estimate posterior expectations of quantities of interest.

As described in Chapter 1, if it is possible to sample directly from the
posterior, 𝜋(𝜽) := 𝜋(𝜽 |D) (see equation (1.3)) then for any function ℎ

with E𝜋
[
ℎ2(𝜽)

]
< ∞, it is possible to estimate E𝜋 [ℎ(𝜽)] via the Monte

Carlo average (1.4), the typical error of which is of size 𝑛−1/2, where 𝑛 is
the number of samples. Unfortunately, it is usually not possible, or is com-
putationally infeasible, to generate independent and identically distributed
samples from 𝜋. Importance sampling provides, perhaps, the most natural
alternative to direct sampling; however, as exemplified in Section 1.1.5 the
variance of importance sampling estimators typically degrades exponen-
tially quickly with dimension.

Markov chain Monte Carlo (MCMC) is a generalisation of the Monte
Carlo method that, as we will see, has several favourable properties when
it comes to facilitating computation in Bayesian statistics problems. In this
context, the aim of MCMC is to construct a Markov chain, {𝜽 𝑘}∞𝑘=1 whose
limiting distribution is the posterior distribution of interest, so that samples
from a sufficiently long chain, except, perhaps, those near the beginning,
arise approximately from the posterior and can be used to create Monte
Carlo approximations to expectations as in (1.4), via the ergodic average
defined in (1.10).

The workhorse of MCMC is the Metropolis–Hastings algorithm. We
describe the general Metropolis–Hastings algorithm and show that the
resulting chain satisfies detailed balance with respect to 𝜋. We then in-
vestigate particular special cases: the independence sampler, the random
walk Metropolis algorithm, the Metropolis-adjusted Langevin algorithm,
and Hamiltonian Monte Carlo. For each of these cases, we overview the be-

42

2.1 The Metropolis–Hastings Algorithm 43

haviour as the dimension 𝑑 → ∞, motivating the need for further scalable
methods.

Throughout this chapter, we denote the support of 𝜋 by Θ; for example
Θ might be R𝑑 for some 𝑑 ∈ N.

2.1 The Metropolis–Hastings Algorithm
The idea of the Metropolis–Hastings algorithm is to define the dynamics of
a Markov chain by specifying an arbitrary proposal distribution for the next
state of the Markov chain, and then having a mechanism where this proposal
is either accepted or rejected. If it is rejected, the state of the Markov chain is
unchanged. As we will see, it is generally possible to choose the acceptance
probability to depend on the target distribution, so that the resulting Markov
chain will have the target distribution as its stationary distribution.

The Metropolis–Hastings algorithm is given in Algorithm 1. The poste-
rior density, 𝜋, appears in both the numerator and denominator of the ac-
ceptance probability, 𝛼(𝜽 𝑘 , 𝜽 ′), so terms involving the typically intractable
density 𝜋(𝜽) can be replaced with the tractable product of the prior and
the likelihood, 𝜋0 (𝜽) 𝐿 (𝜽;D); we do not need to know the normalising
constant, 𝑝(D) =

∫
Θ
𝜋0 (𝜽) 𝐿 (𝜽;D) d𝜽 , as it will cancel in the ratio.

As well as 𝜋(𝜽), and an initial value for the parameter vector, the
Metropolis–Hastings algorithm requires a proposal density, 𝑞(𝜽 ′ |𝜽). Com-
mon choices of the density 𝑞 include the following:

Metropolis–Hastings independence sampler (MHIS) 𝑞(𝜽 ′ | 𝜽) := 𝑞′(𝜽 ′)
for some density 𝑞′. The proposal does not depend on the current
state; for example, 𝑞′ could be the same as a sensible importance
sampling proposal distribution (see Section 1.1.5).

Random walk Metropolis (RWM) 𝑞(𝜽 ′ | 𝜽) = 𝑞′(𝜽 ′ − 𝜽), where 𝑞′ is
a density such that for any vector v ∈ Θ, 𝑞′(v) = 𝑞′(−v). For
example 𝜽 ′ |𝜽 ∼ N(𝜽 , _2I𝑑), where I𝑑 is the 𝑑 × 𝑑 identity matrix
and _ > 0.

Metropolis-adjusted Langevin algorithm (MALA) adds a specific form
of offset to a Gaussian RWM proposal. For example, 𝜽 ′ |𝜽 ∼ N(𝜽 +
1
2_

2∇ log 𝜋(𝜽), _2I𝑑).
Hamiltonian Monte Carlo (HMC) starting from 𝜽 and with a random

momentum, such as p ∼ N(0, 𝑀I𝑑), Hamiltonian dynamics are ap-
proximately integrated forwards on a potential surface of− log 𝜋(𝜽).
The proposal, 𝜽 ′, is the position after some fixed time 𝑇 .

44 Reversible MCMC and its Scaling

Later in this chapter we describe and investigate these classes of proposals
in more detail and examine their relative efficiencies.

Algorithm 1: Metropolis–Hastings algorithm
Input: Density 𝜋(𝜽), initial value 𝜽0 and proposal density 𝑞(𝜽 ′ |𝜽).
for 𝑘 ∈ 0, . . . , 𝑛 − 1 do

Propose 𝜽 ′ from 𝑞(𝜽 ′ |𝜽 𝑘)
Calculate the acceptance probability:

𝛼(𝜽 𝑘 , 𝜽 ′) := min
(
1,
𝜋(𝜽 ′)𝑞(𝜽 𝑘 |𝜽 ′)
𝜋(𝜽 𝑘)𝑞(𝜽 ′ |𝜽 𝑘)

)
. (2.1)

With a probability of 𝛼(𝜽 𝑘 , 𝜽 ′) accept the proposal, 𝜽 𝑘+1 ← 𝜽 ′;
otherwise reject it, 𝜽 𝑘+1 ← 𝜽 𝑘 .

end

That the Metropolis–Hastings algorithm has a stationary density of 𝜋,
follows directly from the fact that it is reversible with respect to 𝜋 (see
Section 1.3). We now show that this is the case. First, notice that

𝜋(𝜽)𝑞(𝜽 ′ |𝜽)𝛼(𝜽 , 𝜽 ′) = 𝜋(𝜽 ′)𝑞(𝜽 |𝜽 ′)𝛼(𝜽 ′, 𝜽),

since both are min (𝜋(𝜽)𝑞(𝜽 ′ |𝜽), 𝜋(𝜽 ′)𝑞(𝜽 |𝜽 ′)). Now suppose that 𝜽 𝑘 ∼ 𝜋,
let B, C ⊆ Θ and let A be the event that the proposal is accepted. Then

P (A, 𝜽 𝑘 ∈ B, 𝜽 𝑘+1 ∈ C) =
∫
𝜽𝑘 ∈B

∫
𝜽′∈C

𝜋(𝜽 𝑘)𝑞(𝜽 ′ | 𝜽 𝑘)𝛼(𝜽 𝑘 , 𝜽 ′) d𝜽 ′d𝜽 𝑘

=

∫
𝜽𝑘 ∈B

∫
𝜽′∈C

𝜋(𝜽 ′)𝑞(𝜽 𝑘 | 𝜽 ′)𝛼(𝜽 ′, 𝜽 𝑘) d𝜽 𝑘d𝜽 ′

=

∫
𝜽′∈B

∫
𝜽𝑘 ∈C

𝜋(𝜽 𝑘)𝑞(𝜽 ′ | 𝜽 𝑘)𝛼(𝜽 𝑘 , 𝜽 ′) d𝜽 𝑘d𝜽 ′

= P (A, 𝜽 𝑘 ∈ C, 𝜽 𝑘+1 ∈ B)

where, on the penultimate line we have switched the labels. Since 𝜽 𝑘 = 𝜽 𝑘+1
on a rejection, we also have that

P
(
A∁, 𝜽 𝑘 ∈ B, 𝜽 𝑘+1 ∈ C

)
= P

(
A∁, 𝜽 𝑘 ∈ C, 𝜽 𝑘+1 ∈ B

)
.

Summing the two equalities above for A and A∁ gives

P (𝜽 𝑘 ∈ B, 𝜽 𝑘+1 ∈ C) = P (𝜽 𝑘 ∈ C, 𝜽 𝑘+1 ∈ B) ,

as required.

2.1 The Metropolis–Hastings Algorithm 45

Burn-In, Mixing, Estimators and their Variance
Typically, the initial value for the Markov chain is not sampled from 𝜋,
since if it were possible to do this then there would be no need for MCMC.
Hence, the marginal distributions of early points in the Markov chain might
not be sufficiently close to 𝜋. In practice, we discard such early points from
the sample; the terms warm-up or burn-in are applied to both this initial
period and the samples that arise from it. Here, we imagine that there are
𝑏 burn-in samples, 𝜽−𝑏+1, . . . 𝜽0 and that the remaining samples, which are
deemed to be from a chain that has approximately converged, are 𝜽1, . . . , 𝜽𝑛.
The expectation of any function ℎ(𝜽) with respect to the posterior is then
estimated via:

�̂�𝑛 (ℎ) :=
1
𝑛

𝑛∑︁
𝑘=1

ℎ(𝜽 𝑘). (2.2)

Following the exposition in Section 1.3.2, subject to conditions, including
that E𝜋

[
ℎ(𝜽)2

]
< ∞, the variance of this estimator may be approximated

as in (1.15); this is an approximation both because the Markov chain has
not fully converged after the 𝑏 burn-in iterations, and because 𝑛 is finite. As
with standard Monte Carlo estimates, the standard error decreases as 𝑛−1/2;
however, the constant of proportionality is (typically) higher, reflecting the
fact that the samples are (typically) positively correlated.

In most MCMC algorithms, the positive correlation arises from two
separate sources: firstly, a proposal may be rejected, in which case the new
position of the chain is the same as the old position; secondly most types
of Metropolis-Hastings algorithm are local: the proposal is, in some sense,
close to the current value when compared to the size of the main posterior
mass. Consequently, the chain can take many iterations to move from one
part of the posterior to another. The act of moving around the posterior
is termed mixing and in this book we informally refer to the number of
iterations taken to move substantially within the context of the posterior
distribution as the mixing time.

Running Example
The following running example of an isotropic Gaussian target distribu-
tion serves to demonstrate some properties of the Metropolis–Hastings
algorithm in practice. In the next section, it will be used to illustrate the
different measures of efficiency of a Metropolis–Hastings Markov chain
algorithm.

46 Reversible MCMC and its Scaling

Example 2.1 Given 𝑑 ∈ N, and 𝜽 = (\1, . . . , \𝑑)⊤, let

𝜋𝑑 (𝜽) = N(𝜽; 0, I𝑑) ≡
1

(2𝜋)𝑑/2 exp

(
−1

2

𝑑∑︁
𝑖=1

\2
𝑖

)
≡ 1
(2𝜋)𝑑/2 exp

(
−1

2
∥𝜽 ∥2

)
,

where ∥ · ∥ denotes the Euclidean norm, and I𝑑 the 𝑑 × 𝑑 identity matrix.

For now, we explore the above target using the RWM algorithm described
above:

𝑞(𝜽 ′ |𝜽) = N
(
𝜽 ′; 𝜽 , _2I𝑑

)
≡ 1
(2𝜋)𝑑/2_𝑑 exp

(
− 1

2_2 ∥𝜽
′ − 𝜽 ∥2

)
.

Figure 2.1 shows plots from 𝑛 = 1000 iterations of the algorithm in Example
2.1 with 𝑑 = 1. The leftmost plot starts from 𝜽0 = 20 while the other two
start from 𝜽0 = 1. More than 99.7% of the posterior mass lies between
𝜽 = −3 and 𝜽 = 3, and so the chain that was started outside of this region
first heads towards the main mass. Once it has arrived, it then explores the
region for the remainder of the time, 𝑛. The exploration is slow because
the scale of the proposed jumps, _ = 0.2, is small compared with the size
of the region. With larger proposed jumps, _ = 2, the exploration is much
more rapid. However, with jumps of size _ = 20, most of the proposals are
outside of the high-density region, so the acceptance ratio is small and the
proposals are rejected. Thus, even though the proposed jumps are large, the
algorithm does not explore the range of posterior values quickly.

0 500 1000
k

0

10

20
λ= 0.2

0 500 1000
k

2

0

2

λ= 2

0 500 1000
k

0

2
λ= 20

Figure 2.1 Trace plots from three RWM runs on 𝜋𝑑 from
Example 2.1 with 𝑑 = 1, using initial values of 20, 1 and 1, and
scalings of 0.2, 2 and 20 respectively.

Theory tells us that the distribution of 𝜽 𝑘 converges to 𝜋 as 𝑘 → ∞.
For a finite 𝑘 , 𝜽 𝑘 will not be an exact draw from 𝜋 but it might be close.
In Figure 2.1 (left) we might deem the distribution sufficiently close after

2.1 The Metropolis–Hastings Algorithm 47

approximately 300 iterations and so we might discard 𝜽0, . . . , 𝜽299 as burn-
in and take {𝜽300, . . . , 𝜽1000} to be an approximate, correlated, sample from
𝜋 for use in a Monte Carlo average, ̂̀ℎ, of the form (1.4). The runs illustrated
in Figure 2.1 (middle and right) started from a sensible value in the posterior
and so {𝜽1, . . . , 𝜽1000} might reasonably be used.

Let us now ignore the need for burn-in when 𝜽0 = 20 and _ = 0.2, or
consider a thought experiment where this algorithm was also started from
𝜽0 = 1. From Figure 2.2, the sample obtained when _ = 2 appears to
represent 𝜋, which is symmetric about a single mode at 0 and has support
beyond ±2, much better than either of the other two samples. Thus, we
might expect estimates, ̂̀ℎ, obtained from the algorithm when _ = 2 to be,
in some sense, more accurate.

2 0
θ

0.0

0.2

0.4

D
en

si
ty

2.5 0.0 2.5
θ

0.0

0.2

0.4

D
en

si
ty

0 2
θ

0.0

0.2

0.4

0.6

D
en

si
ty

Figure 2.2 Histograms of the samples obtained from the
algorithms in Figure 2.1. The left plot (corresponding to _ = 0.2,
𝜽0 = 20) was created after discarding {𝜽0, . . . , 𝜽299} as burn-in;
for the other two runs (centre: _ = 2; right: _ = 20) only 𝜽0 was
discarded.

The empirical acceptance rate for a Metropolis–Hastings algorithm is
the fraction of the 𝑛 proposals that were accepted. For the three RWM
algorithms, these were respectively 0.881, 0.485 and 0.059; the smaller
the proposed jumps, the closer 𝜋(𝜽 ′) typically is to 𝜋(𝜽 𝑘) and so the
higher the acceptance rate. For a stationary Metropolis–Hastings Markov
chain, the empirical acceptance rate approximates the true acceptance rate
at stationarity:

𝛼 = E𝜽∼𝜋,𝜽′∼𝑞 (· |𝜽) [𝛼(𝜽 , 𝜽 ′)]

Aspects of the proposal for the RWM, MALA and HMC are often tuned by
targeting an empirical acceptance rate that is neither too high nor too low. In
later sections, the acceptance rate will provide us with an intuitive entrance
into the behaviour of the canonical Metropolis–Hastings algorithms as the

48 Reversible MCMC and its Scaling

dimension of the parameter vector increases. Here it will be helpful to
define the acceptance ratio: 𝜌(𝜽 , 𝜽 ′) := 𝜋(𝜽 ′)𝑞(𝜽 |𝜽 ′)/{𝜋(𝜽)𝑞(𝜽 ′ |𝜽)}, so
that 𝛼(𝜽 , 𝜽 ′) = min[1, 𝜌(𝜽 , 𝜽 ′)].

2.1.1 Component-wise updates and Gibbs moves
Algorithm 1, the Metropolis–Hastings algorithm, and all of the special cases
that we will examine in this chapter, are written so that a single iteration
consists of a proposal to change the entire 𝜽 vector and a decision on whether
or not to accept this proposal. However, it is also possible, and sometimes
helpful, to sequentially update subsets of the components of 𝜽 . Indeed, each
iteration of the very first Metropolis–Hastings algorithm (Metropolis et al.,
1953) cycled through pairs of components (𝑥 and 𝑦 coordinates of each
particle in a lattice of a large number of particles), applying a random walk
Metropolis update one pair at a time.

Denote the set of components to be updated by 𝜽 (𝑖) and the remaining
components by 𝜽 (−𝑖) . By writing the target as 𝜋(𝜽) = 𝜋(𝜽 (−𝑖))𝜋(𝜽 (𝑖) |𝜽 (−𝑖)),
and the proposal as 𝑞𝑖 (𝜽

′ (𝑖) |𝜽 (𝑖) , 𝜽 (−𝑖)), essentially the same argument as
for a proposal that changes all components shows that the component-wise
propose/accept-reject step with an acceptance probability of

min
(
1,
𝜋(𝜽 ′ (𝑖) |𝜽 (−𝑖))𝑞𝑖 (𝜽 (𝑖) |𝜽

′ (𝑖) , 𝜽 (−𝑖))
𝜋(𝜽 (𝑖) |𝜽 (−𝑖))𝑞𝑖 (𝜽

′ (𝑖) |𝜽 (𝑖) , 𝜽 (−𝑖))

)
satisfies detailed balance with respect to the full posterior, 𝜋. Of course, if
only that move were used, some components would never be updated, the
algorithm would be reducible, and ergodic averages would, therefore, not
converge to the corresponding true expectations. The composition of many
such moves over different components, typically, does not satisfy this de-
tailed balance condition, but, since each move preserves 𝜋, the composition
does, too.

In the special case where the proposal for the 𝑖th block of components is

𝑞𝑖 (𝜽
′ (𝑖) |𝜽 𝑘) := 𝜋(𝜽 ′ (𝑖) |𝜽 (−𝑖)

𝑘
),

the acceptance probability is 1 and the move is called a Gibbs move. Such a
move is only feasible when it is possible to sample from 𝜋(𝜽 (𝑖) |𝜽 (−𝑖)

𝑘
) which

most usually occurs when, conditional on 𝜽 (−𝑖)
𝑘

, the prior for 𝜽 (𝑖) is con-
jugate with its likelihood. For example, when 𝑦1, . . . , 𝑦𝑁 are independent
realisations from a N(`, 1/𝜏) distribution and ` and 𝜏 have independent
priors with ` following a Student-t distribution and 𝜏 ∼ Gam(𝑎, 𝑏), then
a posteriori 𝜏 |` ∼ Gam(𝑎 + 𝑛/2, 𝑏 + 1

2
∑𝑛
𝑗=1(𝑦𝑖 − `)2); this property is

2.1 The Metropolis–Hastings Algorithm 49

sometimes called conditional conjugacy. Gibbs moves offer a further ad-
vantage when compared with many other Metropolis-Hastings moves, over
and above the fact that the acceptance probability is 1: the updated param-
eter component is sampled from the full range of its conditional posterior.
When components are close to independent, this contrasts with algorithms
such as the random walk Metropolis and MALA, where, in moderate to high
dimensions, the moves are local – the proposed value is close to the current
value. However, when, as is typically the case, components are correlated,
the conditional posterior for a component can have a much smaller range
than its marginal posterior, and so the Gibbs moves, too, are, in effect, local.
Whilst they are a useful tool in the MCMC armoury, Gibbs moves are not
the focus of this book and for further information, we refer the interested
reader to the general texts cited in Section 2.3.

2.1.2 The Metropolis–Hastings Independence Sampler
Consider the Metropolis–Hastings independence sampler (MHIS) in the
case where 𝑞(𝜽) = 𝜋(𝜽). In this case 𝛼(𝜽 𝑘 , 𝜽 ′) = 1 and every proposal is
accepted. Since proposals are from 𝜋, the MHIS provides us with an i.i.d.
sample from 𝜋. Of course, in practice, we are typically not able to sample
from 𝜋, but this suggests a heuristic for the MHIS: choose a proposal so
that the acceptance rate is as close as possible to 1.

For unimodal posteriors in low dimensions a reasonable approximation
can often be obtained by first using a numerical method to find the posterior
mode and then choosing a proposal that matches the mode and the curvature
of the log-posterior at this point. This strategy does not scale favourably to
high dimensions, however, as the following simple example shows.

Consider the isotropic unit Gaussian posterior from Example 2.1 and use
the following MHIS proposal:

𝑞(𝜽 ′ |𝜽) = N(0, 𝜎2I𝑑) ≡
1

(2𝜋)𝑑/2𝜎𝑑 exp
(
− 1

2𝜎2 ∥𝜽
′∥2

)
.

The acceptance ratio, 𝜌(𝜽 , 𝜽 ′), is

exp(− 1
2 ∥𝜽

′∥2) exp(− 1
2𝜎2 ∥𝜽 ∥2)

exp(− 1
2 ∥𝜽 ∥2) exp(− 1

2𝜎2 ∥𝜽 ′∥2)
= exp

{
1
2

(
1 − 1

𝜎2

) (
∥𝜽 ∥2 − ∥𝜽 ′∥2

)}
,

so
1
𝑑

log 𝜌(𝜽 , 𝜽 ′) = 1
2

(
1 − 1

𝜎2

) (
1
𝑑
∥𝜽 ∥2 − 1

𝑑
∥𝜽 ′∥2

)
.

50 Reversible MCMC and its Scaling

If the chain is stationary, then ∥𝜽 ∥2 = ∑𝑑
𝑖=1 \

2
𝑖 ∼ 𝜒2

𝑑
since \𝑖

𝑖𝑖𝑑∼ N(0, 1). Thus
E

[
∥𝜽 ∥2/𝑑

]
= 1 and Var

[
∥𝜽 ∥2/𝑑

]
= 2/𝑑, and the same properties hold

for ∥𝜽 ′/𝜎∥2/𝑑. Thus, in high dimensions, to a first-order approximation,
∥𝜽 ∥2/𝑑 ≈ 1 and ∥𝜽 ′∥2/𝑑 ≈ 𝜎2 and

1
𝑑

log 𝜌(𝜽 , 𝜽 ′) ≈ 1
2

(
1 − 1

𝜎2

) (
1 − 𝜎2) .

This gives a first-order approximation to the acceptance rate of

min
(
1, exp

{
− 𝑑

2𝜎2

(
𝜎2 − 1

)2
})
,

which grows exponentially small with dimension unless 𝜎 = 1. Alterna-
tively, stabilising the acceptance rate above zero requires𝜎2 = 1+𝑂 (1/

√
𝑑);

the approximation must become more and more accurate as 𝑑 →∞.
The exponential decrease in acceptance rate with dimension is closely

linked with the exponential increase in the variance of the weights with
dimension in the importance sampling example at the end of Section 1.1.5.
In high dimensions, a sufficiently accurate and tractable approximation, 𝑞,
is rarely available; consequently importance sampling and MHIS are rarely
used, except in relatively simple, low-dimensional scenarios.

2.1.3 The Random Walk Metropolis Algorithm
The random walk Metropolis (RWM) algorithm was the first MCMC algo-
rithm to ever be used. Unlike the independence sampler, it does not require
an accurate global approximation to the posterior and can be tuned so that
it works even in very high dimensions. Furthermore, unlike the algorithms
that we shall explore subsequently, it does not require the gradient of the
log posterior.

The most frequently used RWM proposal, the so-called preconditioned
RWM, has the form 𝜽 ′ |𝜽 = 𝜽 + N(0, _2V), where V is an estimate of
the posterior variance matrix and _ is a tunable scaling parameter. This
enhancement can increase the efficiency of the algorithm by many orders
of magnitude when the components of 𝜽 are highly correlated and/or vary
on very different length scales. However, whatever the proposal, the RWM
constraint, that 𝑞(𝜽 ′ |𝜽) = 𝑞(𝜽 |𝜽 ′), means that the acceptance probability
simplifies to min{1, 𝜋(𝜽 ′)/𝜋(𝜽)}.

2.1 The Metropolis–Hastings Algorithm 51

Scaling of RWM with Dimension
We again consider the isotropic Gaussian posterior of Example 2.1 and
show how, when the chain is at equilibrium, the RWM algorithm using a
N(𝜽 , _2I𝑑) proposal can be made to work no matter what the dimension.

Write the proposal as 𝜽 ′ = 𝜽 + _Z, where Z ∼ N(0, I𝑑). The log accep-
tance ratio is then

log 𝜌(𝜽 , 𝜽 ′) = −1
2
∥𝜽 + _Z∥2 + 1

2
∥𝜽 ∥2 = −_∥𝜽 ∥ �̂� · Z − 1

2
_2∥Z∥2

D
= −_∥𝜽 ∥ 𝑍 ′ − 1

2
_2∥Z∥2, (2.3)

where 𝑍 ′ ∼ N(0, 1) and �̂� = 𝜽/∥𝜽 ∥. Now ∥Z∥2 ∼ 𝜒2
𝑑

and, at equilibrium,
∥𝜽 ∥2 ∼ 𝜒2

𝑑
. By the same argument as used for the MHIS, we might make

a first approximation of ∥Z∥2 ≈ 𝑑 and ∥𝜽 ∥ ≈
√
𝑑, from which it appears

that the acceptance ratio must decay exponentially quickly with dimension.
However, this need not be the case, since we can control the scaling, _. The
fact that ∥𝑍 ∥2/𝑑 ≈ 1 and ∥𝜽 ∥/

√
𝑑 ≈ 1 suggests setting

_ =
ℓ
√
𝑑

(2.4)

for some fixed ℓ > 0. In this case

𝛼(𝜽 , 𝜽 ′) D
= min

[
1, exp

{
−ℓ𝑍 ′ ∥𝜽 ∥√

𝑑
− 1

2
ℓ2 1
𝑑
∥Z∥2

}]
≈ min

[
1, exp

{
−ℓ𝑍 ′ − 1

2
ℓ2

}]
.

This quantity is stable away from zero and does not depend on dimension.
Taking expectations, elementary calculus gives

E𝜽∼𝜋,𝜽′∼𝑞 (· |𝜽) [𝛼(𝜽 , 𝜽 ′)] ≈ 2Φ
(
−1

2
ℓ

)
,

whereΦ is the cumulative distribution function of a standard normal random
variable. This equation describes how, for a high-dimensional Gaussian
target, the acceptance rate decreases as the (dimensionally-adjusted) scaling,
ℓ, increases.

Indeed, much more is true. Figure 2.3 shows trace plots for \1, the first
component of 𝜽 , when 𝑑 = 50 and when 𝑑 = 500 and using a scaling of
_ = ℓ/

√
𝑑 with ℓ = 2. The behaviours of the trace plots appear similar,

except that when 𝑑 = 500 the time scale over which the process explores
the posterior is ten times that when 𝑑 = 50.

52 Reversible MCMC and its Scaling

0 500 1000 1500 2000 2500 3000
k

3

2

1

0

1

2

3
θ

d= 50

0 5000 10000 15000 20000 25000 30000
k

3

2

1

0

1

2

3

θ

d= 500

Figure 2.3 Trace plots for the first component, \1, of 𝜽 for a
RWMH on 𝜋(𝜽) ∝ exp(− 1

2 ∥𝜽 ∥
2) in 𝑑 = 50 (top) and 𝑑 = 500

(bottom). Both algorithms were initialised using a sample from 𝜋

and each used a scaling of _ = ℓ/
√
𝑑 with ℓ = 2.

As dimension goes to infinity, with a scaling of ℓ/
√
𝑑 and with time

sped up by a factor of 𝑑 (essentially running for 𝑛𝑑 iterations rather than
𝑛), the path of the first component approaches (in distribution) the path of
the stochastic differential equation (2.5), below. For simplicity of notation,
we denote the first component by \ and denote its marginal distribution by
𝑓 (\) ∝ exp(−\2/2).

d\𝑡 =
1
2
[log 𝑓 (\𝑡)] ′ ℎ(ℓ)d𝑡 +

√︁
ℎ(ℓ)d𝑊𝑡 , (2.5)

where ℎ(ℓ) = ℓ2 × 2Φ(−ℓ/2). This is the OU process defined in (1.17),

2.1 The Metropolis–Hastings Algorithm 53

with 𝑏 =
√︁
ℎ(ℓ); it has a N(0, 1) stationary distribution. Here, ℎ(ℓ) can be

thought of as the speed of the diffusion, with a larger value corresponding
to a diffusion that will converge to stationarity more quickly, and can be
maximised with respect to ℓ, giving ℓopt ≈ 2.38. This corresponds to an
acceptance rate of 2Φ(−ℓopt/2) ≈ 0.234, and leads to the well-known advice
to choose the RWM scaling so that the acceptance rate is approximately
1/4.

Of more importance for us is that the limiting process is approached by
letting _ = ℓ/

√
𝑑 and speeding up time by a factor of 𝑑. Reversing this logic,

in dimension 𝑑, the first component moves 𝑑 times more slowly than the
diffusion. In other words the time or, equivalently, the number of iterations
taken by the RWM to explore the posterior in dimension 𝑑 is proportional
to 𝑑.

Figure 2.4 emphasises this linear dependence on dimension by continu-
ing the example in Figure 2.3. In dimension 𝑑 = 50, the algorithm is run for
𝑛 = 10000 iterations, and for each component, the auto-correlations are cal-
culated up to a lag of 300. The dotted blue line shows the component-wise
average of each auto-correlation. For 𝑑 = 500, 𝑛 = 100000 iterations were
used and auto-correlations up to a lag of 3000 were calculated. The dashed
red line shows the component-wise averages plotted against lag/10. The
curves are almost indistinguishable and the resulting estimated integrated
auto-correlation times are, respectively, 70 and 718. The corresponding
effective sample sizes are, therefore, almost identical, even though the ex-
periment with 𝑑 = 500 used ten times the number of iterations.

The above arguments have been made rigorous and applied to more
complex targets such as 𝜋(𝜽) = ∏𝑑

𝑖=1𝐶𝑖 𝑓 (𝐶𝑖\𝑖), for a large class of density
functions 𝑓 (see Roberts and Rosenthal, 2001, for example). The limiting
process for the first coordinate becomes a Langevin diffusion (1.20) with
a stationary density of 𝐶1 𝑓 (𝐶1\1), and in all cases the time taken by the
RWM to explore the target is proportional to 𝑑.

2.1.4 The Metropolis-Adjusted Langevin Algorithm
The Metropolis-adjusted Langevin algorithm (MALA) differs from the
RWM proposal of 𝜽 ′ |𝜽 ∼ N(𝜽 , _2I𝑑) through an additional determinis-
tic offset of 1

2_
2∇ log 𝜋(𝜽). We motivate this proposal and then generalise it

to allow preconditioning via a positive definite variance matrix, V; as with
the RWM, this can bring dramatic efficiency improvements in practice.

The deterministic offset can be seen as an additional movement in the
“uphill” direction, that is biasing the proposal to move to areas of higher

54 Reversible MCMC and its Scaling

0 100 200 300
lag (d= 50) or lag/10 (d= 500)

0.0

0.2

0.4

0.6

0.8

1.0

ρ

d= 50

d= 500

Figure 2.4 Component-wise average auto-correlation plots for a
RWM on 𝜋(𝜽) ∝ exp(− 1

2 ∥𝜽 ∥
2) in 𝑑 = 50 and 𝑑 = 500. Both

algorithms were initialised using a sample from 𝜋 and each used a
scaling of _ = ℓ/

√
𝑑 with ℓ = 2.

posterior density; however, there is a deeper motivation. The proposal can
be written as

𝜽 ′ |𝜽 = 𝜽 + 1
2
_2∇ log 𝜋(𝜽) + 𝝐 (2.6)

where 𝝐 ∼ N(0, _2I𝑑).
Substituting _2 = 𝛿𝑡, we see that the proposal is exactly the Euler–

Maruyama discretisation of the Langevin diffusion that has a stationary
distribution of 𝜋, (1.20) (with 𝑏 = 1). In particular, in the hypothetical limit
as _ ↓ 0 the algorithm should require no accept-reject step to target 𝜋. In
this sense, it is a natural form for the proposal.

We now derive the preconditioned MALA proposal. For a general positive-
definite V, let A be a square matrix such that AA⊤ = V, and consider
𝝍 = A𝜽 . Multiplying (2.6) by A gives

𝝍 ′ |𝝍 = 𝝍 + 1
2
_2A∇𝜽 log 𝜋(𝜽) + A𝝐 ,

where we have made explicit that the gradient is with respect to 𝜽 . The

2.1 The Metropolis–Hastings Algorithm 55

density for 𝝍 is �̃�(𝝍) ∝ 𝜋(A−1𝝍) = 𝜋(𝜽). Further, ∇\ = A⊤∇𝜓, so

𝝍 ′ |𝝍 = 𝝍 + 1
2
_2V∇𝝍 log �̃�(𝝍) + A𝝐 .

Since A𝝐 ∼ N(0, _2V), this corresponds to the preconditioned MALA
proposal:

𝜽 ′ |𝜽 ∼ N
(
𝜽 + 1

2
_2V∇ log 𝜋(𝜽), _2V

)
.

When the posterior is unimodal, preconditioned MALA is often most effi-
cient when V is an approximation to the posterior variance.

We now explore the scaling of MALA with dimension and the sensitivity
to large gradients. In both of these analyses the following simplification of
part of the log acceptance ratio will be helpful. For the MALA proposal in
(2.6), and writing g(𝜽) for the gradient at 𝜽 ,

log
𝑞(𝜽 |𝜽 ′)
𝑞(𝜽 ′ |𝜽) =

1
2_2 ∥𝜽

′ − 𝜽 − _
2

2
g(𝜽)∥2 − 1

2_2 ∥𝜽 − 𝜽
′ − _

2

2
g(𝜽 ′)∥2

=
1
8
[g(𝜽) + g(𝜽 ′)]⊤

[
_2g(𝜽) − _2g(𝜽 ′) + 4(𝜽 − 𝜽 ′)

]
= −1

8
[g(𝜽) + g(𝜽 ′)]⊤

[
_2g(𝜽) + _2g(𝜽 ′) + 4𝝐

]
. (2.7)

Scaling of MALA with Dimension
Consider the isotropic Gaussian running example, Example 2.1, where
g(𝜽) = −𝜽 . For the proposal noise, we write 𝝐 = _Z, where Z ∼ N(0, I𝑑).
Using (2.7), the log acceptance ratio for MALA is

log 𝜌(𝜽 , 𝜽 ′) = 1
2
∥𝜽 ∥2 − 1

2
∥𝜽 ′∥2 − _

2

8
∥𝜽 + 𝜽 ′∥2 + 1

2
_(𝜽 + 𝜽 ′)⊤Z.

Substituting 𝜽 ′ = (1− 1
2_

2)𝜽+_Z from (2.6) and collecting terms, we obtain

log 𝜌(𝜽 , 𝜽 ′) = −_
3

8

[
_

{
∥Z∥2 − ∥𝜽 ∥2

}
+ 1

4
_3∥𝜽 ∥2 + (2 − _2)𝜽⊤Z

]
. (2.8)

Since ∥Z∥2 and ∥𝜽 ∥2 are both 𝜒2
𝑑
, each has an expectation of 𝑑 and their

difference is 𝑂 𝑝 (𝑑1/2); further, 𝜽⊤Z ∼ N(0, ∥𝜽 ∥2).
To understand the relative sizes of the terms we informally write:

log 𝜌(𝜽 , 𝜽 ′) = _3
[
_𝑂 𝑝

(
𝑑1/2

)
+ _3𝑂 𝑝 (𝑑) + (2 − _2)𝑂 𝑝

(
𝑑1/2

)]
.

56 Reversible MCMC and its Scaling

Thus, with _ = ℓ/𝑑1/6, the first term vanishes and the second and third are
𝑂 𝑝 (1), leading to an acceptance ratio that is 𝑂 𝑝 (1).

As for the RWM, it is possible to obtain a limiting diffusion of the form
(2.5) for the first component of 𝜽 as the dimension goes to infinity. For
MALA, however, the required scaling is _ = ℓ/𝑑1/6, time is sped up by a
factor of 𝑑1/3 (essentially running for 𝑛𝑑1/3 iterations rather than 𝑛) and,
for the Gaussian target, the speed of the diffusion is ℎ(ℓ) = 2ℓ2Φ(−ℓ3/4).
Optimising the speed with respect to the scaling leads to a recommended
acceptance rate of approximately, 57.4%. As with the RWM, the more
important point for us is that the limiting OU process mixes in a time of
𝑂 (1), so the original process, before it has been sped up, mixes in a time
of 𝑂 (𝑑1/3). This is considerably faster than the 𝑂 (𝑑) mixing of the RWM.

As for the RWM, the above result, which is specific to a N(0, I𝑑) target,
has been generalised to targets of the form 𝜋(𝜽) = ∏𝑑

𝑖=1𝐶𝑖 𝑓 (𝐶𝑖\𝑖), again
leading to a Langevin diffusion for the first component in the limit as
𝑑 →∞, an optimal acceptance rate of 57.4%, and requiring time to be sped
up by a factor of 𝑑1/3.

The above product results for MALA rely on the existence and good
behaviour of all derivatives of 𝑓 up to the 7th order, and that the process
was started from stationarity. Christensen et al. (2005) investigates the
behaviour of MALA on a high-dimensional isotropic Gaussian target when
the algorithm is started close to the mode. When a scaling of _ = ℓ/𝑑1/6

is used, in the limit as 𝑑 → ∞ the process, sped up by a factor of 𝑑1/3,
does not move. Substituting 𝜽 = 0, for example, into (2.8), we see that
log 𝜌 = −_4∥Z∥2/8. Since ∥Z∥2 = 𝑂 𝑝 (𝑑), the acceptance probability is
approximately exp[−ℓ4𝑑1/3]. If, instead, a scaling of _ = ℓ/𝑑1/4 is used
then then acceptance rate remains 𝑂 𝑝 (1) as 𝑑 → ∞. This new process,
sped up by a factor of 𝑑1/2, moves deterministically towards the region of
the main posterior mass. Reductions in efficiency can also occur if only
lower derivatives of the target are well-behaved.

Sensitivity to gradients
Whilst the scaling properties of MALA are favourable compared with those
of the RWM and MHIS, the performance of MALA is notoriously sensitive
to large gradients. We illustrate this with a simple example in one dimension.

Example 2.2 Let \ ∈ R and for some 𝑎 > 0 let 𝜋(\) ∝ exp
(
− 1
𝑎
|\ |𝑎

)
, so

∇ log 𝜋(\) = −\ |\ |𝑎−2 and |∇ log 𝜋(\) | = |\ |𝑎−1.
When 𝑎 > 2, whatever the (fixed) value of _, for large enough \, E [\ ′ |\]

is dominated by the term 1
2_

2∇ log 𝜋(\), so that (with a very high proba-

2.2 Hamiltonian Monte Carlo 57

bility) the proposal has the opposite sign to the current value and a much
larger magnitude, _2 |\ |𝑎−1/2.

Writing 𝜖 = _𝑍 , where 𝑍 ∼ N(0, 1), the log acceptance ratio for MALA
is 𝜌(\, \ ′) = log 𝜋(\ ′) − log 𝜋(\) + 𝐵(\, \ ′), where, from (2.7),

𝐵(\, \ ′) = 1
8
{\ |\ |𝑎−2 + \ ′ |\ ′ |𝑎−2}{4_𝑍 − _2\ |\ |𝑎−2 − _2\ ′ |\ ′ |𝑎−2}. (2.9)

The highest order term in (2.9) arises from the product of \ ′ terms, so
it is negative and of order |\ |2(𝑎−1)2 . The difference in log posteriors is
dominated by log 𝜋(\ ′) ∼ −|\ |𝑎 (𝑎−1) , which is, again, large and negative.
Hence, the acceptance probability is almost certainly very close to 0. Un-
surprisingly, since the proposal is even further from the main mass than
the current value is, the proposal is almost certainly rejected. As \ moves
further and further into the tail of the target, the average (over the proposal
distribution) acceptance probability for MALA becomes arbitrarily small
and the algorithm converges increasingly slowly.

In Example 2.2, similar poor behaviour occurs even with 𝑎 = 2 (a
Gaussian posterior), provided _2 > 2. More generally, MALA can become
"stuck" anywhere that ∥∇ log 𝜋∥ is large. In particular, the basic MALA
algorithm should be used with caution if the user suspects that the posterior
has tails which are lighter than Gaussian. Mitigations against this behaviour
are briefly discussed in the Chapter Notes.

2.2 Hamiltonian Monte Carlo
We have seen that when the dimension 𝑑 is high, MALA can maintain a
high acceptance rate with a scaling of ℓ/𝑑1/6, whereas the RWM requires a
scaling of ℓ/𝑑1/2. In other words, MALA can propose much larger sensible
jumps than the RWM. As we shall see, Hamiltonian Monte Carlo allows
even larger jumps than MALA, whilst maintaining a high acceptance rate.
Hamiltonian Monte Carlo (HMC) can be viewed as using a Metropolis–
Hastings algorithm, but with a more intricate proposal mechanism than
those seen so far.

One may consider − log 𝜋(𝜽) as a potential energy surface. Intuitively
one may think of this as a physical surface on which a “particle” with mass𝑀
currently sits at a “height” (strictly, potential energy) of − log 𝜋(𝜽) above a
current parameter value, 𝜽 ∈ R𝑑 . To obtain the proposal, the particle is given
a random momentum, p ∈ R𝑑 drawn from a symmetric distribution. The
true frictionless motion that the particle would undergo along the potential

58 Reversible MCMC and its Scaling

surface according to Hamiltonian dynamics is approximated numerically.
The proposal is the position 𝜽 ′ ∈ R𝑑 after a time 𝑇 , a tuning parameter.

As we shall see, the log-acceptance ratio for the algorithm can be written
as

log 𝜌(𝜽 , 𝜽 ′) = − log 𝜋(𝜽) + 1
2𝑀

p⊤p −
{
− log 𝜋(𝜽 ′) + 1

2𝑀
p′⊤p′

}
,

where p′ is the momentum at time 𝑇 . The term, p⊤p/(2𝑀) is the kinetic
energy of the particle, and − log 𝜋(𝜽) is the potential energy, so the ac-
ceptance rate is min[1, exp(−𝛿𝐸)], where 𝛿𝐸 is the change in total energy
over time 𝑇 . Frictionless motion conserves the total energy so that under
the exact dynamics the acceptance probability is 1. Numerical integration
approximates the dynamics, using an integration step size, 𝜖 . A smaller 𝜖
gives a more accurate numerical scheme and a higher average acceptance
rate, but for a given 𝑇 it also requires more numerical steps and, hence, a
larger computational cost.

We now provide a more rigorous description of a standard version of the
algorithm, including an explanation of the acceptance probability that leads
to a stationary distribution of 𝜋.

The first component of the algorithm is a positive-definite mass matrix,
M, the inverse of which plays a similar role to the preconditioning matrix
V used in the RWM and MALA. The mass of an object, as used in the
intuitive explanation above, is the ratio between the magnitude of a force
that is applied and the magnitude of the acceleration that results and is a
scalar. For additional generality, in HMC, we imagine that this ratio can
be different along each of a set of 𝑑 orthogonal principal axes leading to a
mass matrix rather than a scalar.

The core component of the HMC algorithm is the numerical integration
scheme, which repeatedly uses the leapfrog step to deterministically evolve
the position and momentum from a time 𝑡 to a time 𝑡 + 𝜖 : (𝜽 𝑡+𝜖 , p𝑡+𝜖) =
Leap(𝜽 𝑡 , p𝑡 ; 𝜖,M), where

p∗ = p𝑡 +
1
2
∇ log 𝜋(𝜽 𝑡), 𝜽 𝑡+𝜖 = 𝜽 𝑡 +𝜖M−1p∗, p𝑡+𝜖 = p∗+

1
2
∇ log 𝜋(𝜽 𝑡+𝜖).

HMC uses the leapfrog scheme rather than, for example, the Euler or Runge–
Kutta schemes because the leapfrog scheme possesses two key properties
that will be discussed shortly.

HMC repeats the leapfrog step 𝐿 times, where 𝐿𝜖 = 𝑇 , to obtain the
proposal, 𝜽 ′ = 𝜽𝑇 as depicted in Figure 2.5. The proposed momentum is,
in fact, p′ = −p𝑇 and we denote the transformation: (𝜽 , p) → (𝜽 ′, p′) by
Leap𝐿− .

2.2 Hamiltonian Monte Carlo 59

3 2 1 0 1 2 3
3

2

1

0

1

2

3
current
proposed

Figure 2.5 Initial point 𝜽 = 𝜽0 = + and final point 𝜽 ′ = 𝜽2.5 = ×
after 𝐿 = 25 leapfrog steps using a time interval of 𝜖 = 0.1 and a
mass matrix of M = I2. The momentum at the current and
proposed point (before the moment flip) is proportional to the size
of the corresponding arrow and intermediate points appear as
small solid circles.

Standard HMC proposes p from a N(0,M) distribution, and can be
viewed as targeting a joint density of (𝜽 , p) that is the product of the
density for p and the posterior:

�̃�(𝜽 , p) = 𝜋(𝜽) (2𝜋)−𝑑/2det(M)−1/2 exp
[
− 1

2
p⊤M−1p

]
At the end of each iteration, we discard p, and the marginal for 𝜽 is 𝜋,
as required. Algorithm 2 details the standard version of the Hamiltonian
Monte Carlo algorithm.

HMC combines a momentum refresh with a Metropolis–Hastings step
which uses a deterministic proposal (𝜽 , p) ← (𝜽 ′, p′) ≡ Leap𝐿− (𝜽 , p; 𝜖 ; M);
finally the new momentum is discarded. The momentum refreshment pre-
serves �̃� as it samples directly from the correct conditional. We now explain
why the accept-reject step with a deterministic proposal also preserves �̃�.

The leapfrog step possesses two key properties:

60 Reversible MCMC and its Scaling

Algorithm 2: Hamiltonian Monte Carlo
Input: Density 𝜋(𝜽), initial value 𝜽0, mass matrix M, time interval

𝑇 , number of leapfrog steps 𝐿.
𝜖 ← 𝑇/𝐿.
for 𝑘 ∈ 0, . . . , 𝑛 − 1 do

Sample p ∼ N(0,M).
(𝜽 ′, p′) ← Leap𝐿− (𝜽 𝑘 , p).
Calculate the acceptance probability:

𝛼(𝜽 𝑘 , p; 𝜽 ′, p′) := min
(
1,
�̃�(𝜽 ′, p′)
�̃�(𝜽 𝑘 , p)

)
.

With a probability of 𝛼(𝜽 𝑘 , p; 𝜽 ′, p′) accept the proposal,
𝜽 𝑘+1 ← 𝜽 ′; otherwise reject it, 𝜽 𝑘+1 ← 𝜽 𝑘 .

end

Property 1 Leap has a Jacobian of 1.

Property 2 If Leap(𝜽 , p) = (𝜽 ′, p′) then Leap(𝜽 ′,−p′) = (𝜽 ,−p).

Property 1 arises because the Leapfrog is a composition of three transfor-
mations each of which has a Jacobian of 1. Property 2 is straightforward
to verify, and emulates frictionless dynamics in that if after moving for
some time the momentum of an object is suddenly reversed, after the same
amount of time again the object will end up back where it started, moving
with the same speed as when it started but in the opposite direction. The
composition of 𝐿 leapfrog steps possesses the same property: in Figure
2.5, starting at the × but with a momentum given by the reverse of the
corresponding arrow, and proceeding for 25 leapfrog steps leads to the +
position, but with a momentum of exactly the reverse of the true initial
momentum that the corresponding arrow represents.

Naturally, Leap𝐿− , the composition of 𝐿 leapfrog steps, combined with a
momentum flip, also has a Jacobian of 1. Moreover, Leap𝐿− is self-inverse:
Leap𝐿− (Leap𝐿− (𝜽 , p)) = (𝜽 , p); equivalently, from (𝜽 ′, p′) we would propose
(𝜽 , p).

As in Section 2.1, the detailed balance condition is trivial under rejection
so we focus on acceptances. Let A be the event of an acceptance and write
(𝜽 𝑘 , p𝑘) and (𝜽 𝑘+1, p𝑘+1) for the position and momentum before and after
the acceptance step (and before the momentum is discarded). Then, for
B ∈ R2𝑑 and C ∈ R2𝑑 , and writing Leap𝐿− (A) for the image of a set A

2.2 Hamiltonian Monte Carlo 61

under Leap𝐿− ,

P (A, (𝜽 𝑘 , p𝑘) ∈ B, (𝜽 𝑘+1, p𝑘+1) ∈ C)

=

∬
B∩Leap𝐿

− (C)
�̃�(𝜽 , p)𝛼(𝜽 , p; 𝜽 ′, p′) d(𝜽 , p)

=

∬
Leap𝐿

− (B)∩C
�̃�(𝜽 ′, p′)𝛼(𝜽 ′, p′; 𝜽 , p)) d(𝜽 ′, p′)

= P (A, (𝜽 𝑘 , p𝑘) ∈ C, (𝜽 𝑘+1, p𝑘+1) ∈ B) ,

where on both intermediate lines we have used that Leap𝐿− is self inverse
and the penultimate line uses that the Jacobian of (𝜽 , p) → (𝜽 ′, p′) is 1.

Scaling of HMC with Dimension
Given a particular integration time, 𝑇 , the smaller the step size, 𝜖 , the more
accurate the leapfrog scheme, and the closer the acceptance rate is to 1.
At the same time, the computational cost is proportional to the number of
leapfrog steps, 𝐿 = ⌈𝑇/𝜖⌉. A large 𝜖 leads to many rejections and a small
𝜖 leads to a high computational cost, suggesting that there is an optimal
choice of 𝜖 between these two extremes.

In this analysis, we consider a general product target, 𝜋(𝜽) = ∏𝑑
𝑖=1 𝑓 (\𝑖),

and assume an identity mass matrix, M = I𝑑 . In this case, the evolution of
each (\𝑖, 𝑝𝑖) by Leap𝐿− does not depend on any of the other components.
The acceptance ratio for HMC is

𝜌(𝜽 , p; 𝜽 ′, p′) = �̃�(𝜽 ′, p′)
�̃�(𝜽 , p) =

𝑑∏
𝑖=1

𝜌
(𝑖)
1

where (𝜽 ′, p′) = Leap𝐿− (𝜽 , p), a deterministic function, and

𝜌
(𝑖)
1 =

𝑓 (\ ′𝑖)N(𝑝′𝑖; 0, 1)
𝑓 (\𝑖)N(𝑝𝑖; 0, 1) .

At stationarity, after cancellations, and using the unit Jacobian of Leap𝐿− ,
we have

E\𝑖∼ 𝑓 , 𝑝𝑖∼N(0,1)

[
𝜌
(𝑖)
1

]
=

∫
𝑓 (\ ′𝑖)N(𝑝′𝑖; 0, 1) d\𝑖d𝑝𝑖

=

∫
𝑓 (\ ′𝑖)N(𝑝′𝑖; 0, 1) d\ ′𝑖d𝑝′𝑖 = 1. (2.10)

Moreover, the 𝜌 (𝑖)1 are i.i.d., so, by the central limit theorem, approximately,

log 𝜌 =

𝑑∑︁
𝑖=1

log 𝜌𝑖 ∼ N(𝑑E [log 𝜌1] , 𝑑Var [log 𝜌1]),

62 Reversible MCMC and its Scaling

from which we see that 𝜌 has approximately a lognormal distribution. From
(2.10), and the component-wise independence, E [𝜌] = 1, so E [log 𝜌] =
− 1

2 Var [log 𝜌] and, hence,E [log 𝜌1] ≈ − 1
2 Var [log 𝜌1]. This gives the same

distribution for the log-acceptance ratio as we found for the RWM in (2.3)
with the same scaling of the expectation and variance with dimension if _
(for the RWM) or 𝜖 (for HMC) is kept fixed. For the RWM, this necessitated
taking _2 ∝ 1/𝑑; however, for Hamiltonian dynamics approximated by the
leapfrog integrator with step size 𝜖 over a time period 𝑇 , the error in the
total energy is 𝑂 (𝜖2); i.e., E [| log 𝜌1 |] = 𝑂 (𝜖2). Thus

Var [log 𝜌1] +
1
4

Var [log 𝜌1]2

= Var [log 𝜌1] + E [log 𝜌1]2 = E
[
(log 𝜌1)2

]
= 𝑂 (𝜖4).

Setting 𝜖 = 𝑂 (𝑑−1/4) gives Var [log 𝜌1] = 𝑂 (1/𝑑), so both E [log 𝜌] and
Var [log 𝜌] are𝑂 (1), as required for the acceptance ratio to be well-behaved.
Taking 𝜖 ∝ 𝑑−1/4, and 𝑇 fixed as dimension increases, implies that for a
given amount of movement in each component, the number of leapfrog
steps, and hence the computational cost, increases in proportion to 𝑑1/4.
Contrasting this with a cost of 𝑑1/3 for MALA and 𝑑 for the RWM shows
why HMC is often the algorithm of choice for high-dimensional targets.

Tuning HMC
After a more rigorous scaling analysis than our heuristic explanation, Beskos
et al. (2013) concludes that given 𝑇 , in the high-dimensional limit, 𝜖 should
be chosen so that the acceptance rate is around 65%; this limit is approached
slowly, however, and in practice, it is often found that a higher acceptance
rate is optimal.

The main difficulty with tuning HMC is in choosing the integration time,
𝑇 . For example, for a N(0, 𝜎2) target, 𝜋, using a momentum of 𝑝 ∼ N(0, 1),
it is straightforward to show that if \0 ∼ 𝜋 then under the true Hamiltonian
dynamics, Cor[\0, \𝑇] = cos(𝑇/𝜎). If the target is a product of Gaussians,
each with a different length scale, then the auto-correlations between the
current values and the proposals for each coordinate have different periods.
The periodicity means that increasing 𝑇 does not monotonically decrease
the auto-correlation and the different periods mean that the minimum corre-
lation over all components, which upper bounds the minimum of the lag-1
auto-correlations, is an erratic function of 𝑇 . Hence, the overall efficiency
can, and often does, behave erratically as 𝑇 is varied. This is illustrated in
Figure 2.6 where the optimal choice of𝑇 is around 8–9, but slight deviations
from this range lead to substantial decreases in efficiency.

2.3 Chapter Notes 63

0 5 10 15 20 25 30
T

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

(θ
0
,θ
T
)

θi ∼N(0, i 2), i= 1, , 5

Figure 2.6 Cor(\0, \𝑇) against 𝑇 for all 5 components of 𝜽 when
𝜋(𝜽) ∝ exp[− 1

2
∑5
𝑖=1 \

2
𝑖
/𝑖2], 𝜽0 ∼ 𝜋 and p ∼ N(0, I5) (non-solid

lines). The thick solid line is the pointwise maximum over
components.

2.3 Chapter Notes

This chapter has only touched the surface on many established aspects
of MCMC and variations on the Metropolis–Hastings algorithm of Hast-
ings (1970). The first MCMC algorithm was the random-walk Metropolis-
within-Gibbs algorithm of Metropolis et al. (1953), whilst the MALA was
suggested and studied in Besag (1994) and Roberts and Tweedie (1996) and
HMC was proposed in Duane et al. (1987). There are many texts and re-
view articles devoted to Markov chain Monte Carlo, including Geyer (1992),
Robert and Casella (1999), Gamerman and Lopes (2006) and Brooks et al.
(2011).

The first high-dimensional RWM scaling result showing a limiting dif-
fusion appears in Roberts et al. (1997) and applies to a product target,
𝜋(𝜽) ∝ ∏𝑑

𝑖=1 𝑓 (\𝑖); this is extended to MALA in Roberts and Rosen-
thal (1998) and, for both the RWM and MALA, to targets of the form∏𝑑
𝑖=1𝐶𝑖 𝑓 (𝐶𝑖\𝑖) in Roberts and Rosenthal (2001). Sherlock and Roberts

(2009) tackles the RWM on spherical and elliptical targets, showing that
in some situations the optimal acceptance rate can be less than 0.234, and

64 Reversible MCMC and its Scaling

Sherlock et al. (2015) extends the analysis for product targets to the pseudo-
marginal RWM. Of the many other scaling results for these two algorithms,
we highlight the following: Christensen et al. (2005) examines the transient
phases of the algorithms, Beskos et al. (2009) considers a change of mea-
sure from a product law and, finally, Kamatani (2020) considers the RWM
on spherically symmetric scale-mixtures of Gaussians and shows that when
the tails are heavier than exponential, although the optimal scaling is still
ℓ/𝑑, the norm of the process, ∥𝜽 ∥, mixes in a time of 𝑂 (𝑑2) rather than
𝑂 (𝑑), suggesting that the RWM may be too costly on some, more realistic
heavy-tailed targets.

Example 2.2 illustrated the poor behaviour of MALA in the tails of
targets with tails that are lighter than Gaussian. A simple solution is to
truncate the gradient term (Roberts and Tweedie, 1996). Livingstone and
Zanella (2022) provides an alternative use of gradients within the proposal
that leads to the same limiting behaviour as MALA, but is automatically
robust to issues with light-tails.

A single iteration of HMC approximates Hamiltonian dynamics over a
finite time 𝑇 , whatever the dimension. Thus, if, as in the earlier scaling
analysis, 𝑇 is kept fixed, there can be no limiting diffusion for a product
target. A similar scaling analysis to ours appears in Neal (2011), which
itself is based on Creutz (1988); a more rigorous analysis is given in Beskos
et al. (2013).

Recent works have mitigated against the erratic dependence of the HMC
efficiency on the integration time, 𝑇 . Techniques include introducing ran-
domness into the length of the path (Neal, 2011; Bou-Rabee and Sanz-Serna,
2017; Hoffman et al., 2021), randomising the choice of proposal point from
those along the path (Hoffman and Gelman, 2014; Sherlock et al., 2023,
the former also automatically choosing 𝑇 at each iteration and the latter
adjusting 𝑇 according to a natural length scale of the target) or by jittering
the momentum after each leapfrog step (Riou-Durand and Vogrinc, 2023).

Further variations on the HMC algorithm include the truly non-reversible
Horowitz (1991), which is discussed in more detail in Section 4.3, and Sohl-
Dickstein et al. (2014), which tries to mitigate one of the key issues with
Horowitz (1991).

A separate strand of methodological developments for reversible MCMC
starts with position-dependent preconditioning of MALA and extends to
Riemann manifold Hamiltonian Monte Carlo (Girolami and Calderhead,
2011) and Riemann manifold MALA (Xifara et al., 2014) which itself feeds
into the Stochastic Gradient Riemannian Langevin Dynamics described in
Section 3.4.

3

Stochastic Gradient MCMC Algorithms

Chapter 2 introduced Markov chain Monte Carlo algorithms as a simulation-
based approach to approximate distributions of interest. A drawback of the
algorithms introduced in Chapter 2 is that their computational time scales
poorly with large datasets. In this chapter, we will explore a class of algo-
rithms that can be viewed as approximations of the algorithms introduced in
Chapter 2. We introduce the stochastic gradient Langevin algorithm, and ex-
tensions of this algorithm, which are popular Bayesian inference methods in
the field of machine learning. Compared to traditional MCMC algorithms,
we will now replace the gradient of the log density of the target distribution
with a stochastic approximation. This stochastic approximation is generated
using a subsample of the full dataset to produce an approximate MCMC
algorithm. This class of stochastic gradient MCMC algorithms is com-
putationally faster than standard MCMC algorithms but at the expense of
introducing a small asymptotic bias that can be corrected post-hoc. Through
this chapter, we will discuss the motivation behind these algorithms, and
their extensions, and provide empirical comparisons to traditional MCMC
algorithms.

3.1 The Unadjusted Langevin Algorithm
Recall that we aim to sample from a posterior distribution with density 𝜋(𝜽),
where for this chapter, 𝜽 is a 𝑑−dimensional vector in R𝑑 . It is assumed
for the methods we discuss in this chapter that log 𝜋(𝜽) is continuous and
differentiable almost everywhere. Simulating a stochastic process that has
𝜋 as its stationary distribution is a well-established method for generating
samples approximately from 𝜋(𝜽). By sampling from such a process for
an extended period, and discarding the initial burn-in samples, we obtain a
set of samples that approximate 𝜋(𝜽). The accuracy of the approximation
depends on how quickly the stochastic process converges to its stationary
distribution from the initial point, relative to the length of the burn-in period,

65

66 Stochastic Gradient MCMC Algorithms

as well as on the time for the chain to mix within the stationary distribution.
The Markov Chain Monte Carlo (MCMC; see Chapter 2) method is the
most widely used technique for sampling in this manner

With 𝑏 = 1, the overdamped Langevin diffusion first introduced in (1.20)
of Section 1.4.3 is

d𝜽 𝑡 =
1
2
∇ log 𝜋(𝜽 𝑡)d𝑡 + d𝑊𝑡 , (3.1)

where 1
2∇ log 𝜋(𝜽 𝑡) is the drift term and 𝑊𝑡 denotes 𝑑-dimensional Brow-

nian motion. In this chapter we sometimes refer to the solution to this
stochastic differential equation (SDE) simply as the Langevin diffusion.
Under mild regularity conditions, the Langevin diffusion has 𝜋 as its sta-
tionary distribution. As detailed in Section 1.4 and, in particular (1.16), this
equation can be interpreted as defining the dynamics of a Markov process
over infinitesimally small time intervals. That is, for a small time-interval
𝛿 > 0, the Langevin diffusion has a discrete-time analogue given by the
Euler–Maruyama approximation,

𝜽 𝑡+𝛿 = 𝜽 𝑡 +
𝛿

2
∇ log 𝜋(𝜽 𝑡) +

√
𝛿Z, 𝑡 ≥ 0 (3.2)

where Z is a vector of 𝑑 independent standard Gaussian random variables.
This discrete-time update equation is commonly known as the unadjusted
Langevin algorithm (ULA) or the Langevin Monte Carlo algorithm. The
discrete-time sequence {𝜽 𝑡 }𝑡≥0 generated by (3.2) differs from the sequence
produced by the process in (3.1). The update equation given in (3.2) provides
a straightforward and practically implementable method for generating ap-
proximate samples from the overdamped Langevin diffusion. To generate
samples over a duration 𝑇 = 𝑛𝛿, where 𝑛 is an integer, we begin by setting
the initial state of the process to 𝜽0, and then repeatedly simulate the process
using (3.2) to obtain values at times 𝛿, 2𝛿, . . . , 𝑛𝛿. We will use the notation
𝜽 𝑘 to refer to the state of the process at time 𝑘𝛿. As with the MCMC algo-
rithms discussed in Chapter 2, an estimate of any expectation is obtained
via a Monte Carlo average: E𝜋 [ℎ(𝜽)] ≈ 1

𝑛

∑𝑛
𝑘=1 ℎ(𝜽 𝑘).

To improve the accuracy of the Euler–Maruyama discretisation (3.2)
when sampling from the Langevin diffusion at a fixed time 𝑇 , we can
decrease 𝛿. As 𝛿 becomes smaller, the discretisation error decreases and
the approximation becomes more accurate. In theory, we can achieve any
desired degree of accuracy in approximating the SDE (3.1) by selecting
𝛿 small enough. However, for a fixed 𝑇 , the computational cost increases
in proportion to 1/𝛿. Alternatively, given a fixed computational budget,
𝑇 decreases in proportion to 𝛿. The longer 𝑇 is, the more information

3.2 Approximate vs. Exact MCMC 67

about the diffusion’s stationary distribution we collect, and hence, for a
fixed computation budget, the variance of any estimate from the samples
increases as the bias decreases. In practice, therefore, the choice of 𝛿 requires
a compromise between the bias and the variance of our estimators.

3.2 Approximate vs. Exact MCMC
The overdamped Langevin diffusion has 𝜋 as its stationary distribution
and therefore it is natural to consider this stochastic process as the basis
for an MCMC algorithm. In fact, if it were possible to simulate exactly
the dynamics of the Langevin diffusion, then we could use the resulting
realisations at a set of discrete time points as our MCMC output. However,
for general 𝜋(𝜽), the Langevin dynamics are intractable, and therefore it
is necessary to resort to using samples generated by the Euler–Maruyama
approximation (3.2).

This is most commonly seen with the Metropolis-adjusted Langevin
Algorithm (MALA) (see Section 2.1.4). This algorithm uses the Euler–
Maruyama approximation (3.2) over an appropriately chosen time-interval,
𝛿, to define the proposal distribution of a standard Metropolis–Hastings
sampler (see Algorithm 1). Simulated values are then either accepted or
rejected based on the Metropolis–Hastings acceptance probability (2.1).
Such an algorithm has good theoretical properties, and in particular, can
scale better to high-dimensional problems than the simpler random walk
MCMC algorithm. See Section 2.1.4 for a more detailed description of the
MALA algorithm and its dimensional scaling.

A simpler algorithm is the just described unadjusted Langevin algorithm
(3.2), which simulates from the Euler–Maruyama approximation of the
Langevin diffusion but does not use a Metropolis–Hastings accept-reject
step, and so the stationary distribution of the resulting Markov chain is
not 𝜋. Hence, even once the Markov chain has essentially converged, the
Monte Carlo samples are from an approximation to 𝜋 rather than from 𝜋

itself. Because of this, estimators of expectations are typically biased, even
as the number of samples, 𝑛, grows to infinity. Computationally, such an
algorithm is quicker per iteration, but often this saving is small as the cost of
calculating∇ log 𝜋(𝜽), which is required for one step of the ULA algorithm,
typically scales at least linearly with the dataset size. If the MALA algorithm
is optimally tuned, then approximately 40% of the samples will be rejected,
which leads to wasted computation compared to ULA where all samples,
albeit biased, are accepted. However, this is counteracted by the larger step
sizes that are possible with MALA.

68 Stochastic Gradient MCMC Algorithms

Example: Sampling from a Gaussian Posterior Distribution
To illustrate the computational and statistical accuracy trade-offs between
the ULA and MALA schemes, we consider a simple bivariate Gaussian
posterior distribution, which we shall use as a running example throughout
this chapter. We assume that data arise as realisations from a Gaussian
location model with mean parameter 𝜽 assumed to be unknown and the
variance V is known. We select a conjugate Gaussian prior for the unknown
𝜽 which leads to the generative model

y 𝑗 |𝜽 ∼ N (𝜽 ,V) , 𝜽 ∼ N(0, I2), for 𝑗 = 1, . . . , 𝑁, (3.3)

where we set V =

(
1 0
0 10

)
and I2 is a 2-dimensional identity matrix. For

this simple model, it is possible to derive a tractable posterior distribution
𝜽 |y ∼ N(𝝁𝑁 ,𝚺𝑁),where 𝚺𝑁 = (𝑁V−1+ I2)−1 and 𝝁𝑁 = 𝚺𝑁 (V−1 ∑𝑁

𝑗=1 y 𝑗).
We can use both ULA and MALA schemes to sample from the posterior
distribution and compare the Monte Carlo accuracy of both algorithms
against the known ground-truth posterior distribution. We measure the
distributional accuracy between the true posterior 𝜋 and a Monte Carlo
approximation �̃� using the Wasserstein-2 distance,

d2
𝑊2
(𝜋, �̃�) = inf

Z ∈Γ (𝜋, �̃�)

∫
R𝑑×R𝑑

∥𝜽 − 𝜽 ′∥2dZ (𝜽 , 𝜽 ′), (3.4)

where the inf is taken with respect to all joint distributions Z which have 𝜋
and �̂� as their marginal distributions. In the setting where both 𝜋 and �̂� are
Gaussian, there is a tractable closed-form expression for the Wasserstein-2
distance,

d2
𝑊2
(N(𝝁𝑎,𝚺𝑎),N(𝝁𝑏,𝚺𝑏)) = ∥𝝁𝑎−𝝁𝑏∥22+trace(𝚺𝑎+𝚺𝑏−2(𝚺1/2

𝑎 𝚺𝑏𝚺
1/2
𝑎)1/2).

In Figure 3.1, we calculated the approximate Wasserstein-2 distance
between the true posterior and a moment-matched Gaussian approximation
to the Monte Carlo samples generated by the ULA/MALA algorithms.
We simulated 𝑁 = 1000 (left panel) and 𝑁 = 10000 (right panel) data
points from the model (3.3) and ran ULA/MALA for 𝑛 = 1000 iterations.
For each 𝑁 , MALA and ULA used the same step size, 𝛿 = 1/𝑁 . Since
the true posterior is Gaussian, we expect the moment-matched Gaussian
approximation for the MALA sampler to get more and more accurate as
the number of iterations increases. Since the ULA algorithm update is a
conditional Gaussian, the stationary distribution for ULA is also Gaussian,
so the moment-matched Gaussian approximation to this will also get more
and more accurate as the number of iterations increases.

3.3 Stochastic Gradient Langevin Dynamics 69

Comparing the computational time for ULA and MALA, the per iteration
cost of ULA is comparable to MALA initially, if not slightly better. However,
with a larger computational budget, i.e. more Monte Carlo iterations, ULA
is less accurate due to the asymptotic bias from discretising the Langevin
diffusion. When taking into account the reduced computational cost of ULA,
this means that ULA is better for small computational budgets, whereas for
moderate to large computational budgets, MALA is better. Note that the
computational budget required for MALA to display improved statistical
efficiency over ULA is dependent on the dataset size. This is highlighted in
Figure 3.1, where 𝑁 = 1000 in the left panel and 𝑁 = 10000 in the right
panel.

The reason that ULA is competitive with MALA only for very small
computational budgets is that the computational gain per iteration is only
roughly two-fold (i.e. not calculating the accept-reject ratio roughly halves
the cost as the gradient still needs to be calculated), and this is only a small
gain relative to the bias that is introduced. If, on the other hand, there was
a way of implementing ULA, or something like ULA, which was 𝑂 (𝑁)
faster, then the computational benefit compared to MALA would be more
significant. To achieve such a speed-up, this would require an algorithm
where the cost of calculating or approximating the gradient is only 𝑂 (1)
– this is the key idea behind the stochastic gradient Langevin dynamics
algorithm which will be explored in detail in the remainder of this chapter.

3.3 Stochastic Gradient Langevin Dynamics

We have seen how the ULA algorithm is computationally faster than MALA,
at the expense of introducing a bias which produces samples not from the
desired invariant distribution 𝜋, but a distribution close to 𝜋. Even without
the Metropolis-Hastings acceptance probability, the ULA algorithm still
incurs a cost in calculating the gradient of the log-posterior density and
under common assumptions, this computational cost scales linearly with
the data set size.

Recent interest in Bayesian analysis has considered the challenge of
scalable inference in the presence of large datasets, where the log-posterior
density is defined as a sum over data points. For instance, if we consider
data y1, . . . , y𝑁 that are conditionally independent given 𝜽 , then 𝜋(𝜽) ∝
𝜋0(𝜽)

∏𝑁
𝑗=1 𝑓 (y 𝑗 |𝜽). Here, 𝜋0(𝜽) is the prior density, and 𝑓 (y 𝑗 |𝜽) is the

likelihood for the 𝑗 th observation. In this context, we define the log-posterior
density as

70 Stochastic Gradient MCMC Algorithms

0 2 4 6
Computational time

0.5

0.6

0.7

0.8

W
as

se
rs

te
in

 d
is

ta
nc

e

ULA
MALA

0 2 4 6 8
Computational time

0.3

0.4

0.5

0.6

0.7

0.8

W
as

se
rs

te
in

 d
is

ta
nc

e

ULA
MALA

Figure 3.1 Wasserstein distance between the true 𝜋 and
approximate posterior distribution against computational time (in
seconds), where the approximate posterior �̃� is generated using
the ULA and MALA schemes. Left panel 𝑁 = 1000 and right
panel 𝑁 = 10000.

log 𝜋(𝜽) =
𝑁∑︁
𝑗=1

log 𝜋 𝑗 (𝜽), where log 𝜋 𝑗 (𝜽) = log 𝑓 (y 𝑗 |𝜽) +
1
𝑁

log 𝜋0(𝜽).

(3.5)
The computational bottleneck for ULA is in calculating ∇ log 𝜋(𝜽), which
can be expensive if we have a large dataset. For a dataset with 𝑁 independent
observations, where the log-posterior density is a sum over 𝑁 independent
terms (3.5), the computational cost of evaluating the log-posterior density,
or its gradient, is 𝑂 (𝑁) for each iteration of ULA.

A solution to this problem is to use stochastic gradient Langevin dynamics
(SGLD, Welling and Teh, 2011), which avoids calculating ∇ log 𝜋(𝜽), and
instead uses an unbiased estimator of the gradient at each iteration. It is
trivial to obtain an unbiased estimate using a random subsample of the
terms in the sum. The simplest implementation is to choose 𝑚 ≪ 𝑁 and
estimate ∇ log 𝜋(𝜽) with

∇(𝑚) log 𝜋(𝜽) = 𝑁

𝑚

∑︁
𝑗∈S𝑚

∇ log 𝜋 𝑗 (𝜽), (3.6)

where S𝑚 is a random sample of size 𝑚 taken without replacement from
{1, . . . , 𝑁}. We call this the simple estimator of the gradient and use the

3.3 Stochastic Gradient Langevin Dynamics 71

superscript (𝑚) to denote the subsample size used in constructing our esti-
mator. The resulting SGLD algorithm is given in Algorithm 3. Essentially,
the SGLD algorithm is the same as ULA (3.2) and is simulating an Euler–
Maruyama discretisation of the Langevin diffusion. The only difference is
that the true gradient is replaced with the estimated gradient (3.6).

Using an estimator for the gradient adds additional noise, with a variance
of 𝑂 (𝛿2), and therefore the stochastic dynamics no longer follow the ULA
update equation (3.2); instead the SGLD algorithm targets a distribution
that is close to a tempered version of 𝜋. However, for sufficiently small
𝛿, this additional variance becomes negligible compared with the injected
Gaussian noise of (3.2), which has a variance of 𝛿. It is possible to generalise
Algorithm 3 to the setting of adaptive step sizes 𝛿𝑘 which are dependent
on the iteration number 𝑘 . This is not commonly used in practice and for
simplicity, we work with the constant step size version given in Algorithm
3. A justification for using the SGLD algorithm with a decaying step size
can be given by an informal argument along the lines that if the step size is
𝛿𝑘 ↓ 0 for 𝑘 → ∞, then the process will converge to the true overdamped
Langevin diffusion, and hence the Monte Carlo samples will be exact in the
limit (see Section 3.3.3).

Algorithm 3: Stochastic Gradient Langevin Dynamics (SGLD)
Input: 𝜽0, 𝛿.
for 𝑘 ∈ 1, . . . , 𝑛 do

Draw a subset S𝑚 ⊂ {1, . . . , 𝑁}
Estimate ∇(𝑚) log 𝜋(𝜽) using (3.6)
Draw Z𝑘 ∼ N(0, 𝛿I)
Update 𝜽 𝑘+1 ← 𝜽 𝑘 + 𝛿

2∇
(𝑚) log 𝜋(𝜽) + Z𝑘

end

The advantage of SGLD is that, if the subsample size 𝑚 is much smaller
than the full dataset size 𝑁 , the per-iteration cost of the algorithm can be
much smaller than that of either MALA or ULA. For large data applications,
SGLD has been empirically shown to perform better than standard MCMC
when there is a fixed computational budget (Ahn et al., 2015; Li et al.,
2016). In challenging examples, performance has been based on measures
of predictive accuracy on a held-out test dataset, rather than based on
how accurately the samples approximate the true posterior distribution.
Furthermore, the conclusions from such studies will clearly depend on the
computational budget, with larger budgets favouring exact methods such as

72 Stochastic Gradient MCMC Algorithms

MALA; see the theoretical results in Section 3.3.3 and empirical results in
Section 3.2.

The SGLD algorithm is closely related to stochastic gradient descent
(SGD) (Robbins and Monro, 1951), an efficient algorithm for finding the
local maxima of a function. The only difference is the inclusion of the
additive Gaussian noise at each iteration of SGLD. Without the noise,
but with a suitably decreasing step size, SGD would converge to a local
maximum of the density 𝜋(𝜽). Again, SGLD has been shown empirically
to out-perform stochastic gradient descent (Chen et al., 2014), at least in
terms of predictive accuracy – intuitively this is because SGLD will produce
samples from the region around the estimate obtained by SGD, and thus can
average over the uncertainty in the parameters. This strong link between
SGLD and SGD may also explain why the former performs well when
compared to exact MCMC methods, at least in terms of predictive accuracy.

3.3.1 Controlling Stochasticity in the Gradient Estimator
The key ingredient of SGLD is found in replacing the true gradient with an
unbiased estimator. The more accurate this estimator is, the lower the bias
will be for the same computational cost, and thus it is natural to consider
alternatives to the simple estimator (3.6). One way of reducing the variance
of a Monte Carlo estimator is to use control variates (see Section 1.1.4 for a
detailed explanation), which in our setting involves choosing a set of simple
functions 𝑔 𝑗 , 𝑗 = 1, . . . , 𝑁 , which we refer to as control variates, and whose
sum

∑𝑁
𝑗=1 𝑔 𝑗 (𝜽) can be evaluated for any 𝜽 .

We can rewrite the full-data gradient of the log-posterior density as
𝑁∑︁
𝑗=1

∇ log 𝜋 𝑗 (𝜽) =
𝑁∑︁
𝑗=1

𝑔 𝑗 (𝜽) +
𝑁∑︁
𝑗=1

(
∇ log 𝜋 𝑗 (𝜽) − 𝑔 𝑗 (𝜽)

)
,

and from this, we can obtain an unbiased estimator
𝑁∑︁
𝑗=1

𝑔 𝑗 (𝜽) +
𝑁

𝑚

∑︁
𝑗∈S𝑚

(∇ log 𝜋 𝑗 (𝜽) − 𝑔 𝑗 (𝜽)), (3.7)

where again S𝑚 is a random sample of size 𝑚 drawn from {1, . . . , 𝑁}.
The intuition behind this idea is that if each 𝑔 𝑗 (𝜽) ≈ ∇ log 𝜋 𝑗 (𝜽), then this
estimator can have a much smaller variance than the simple subsampled
gradient estimator (3.6).

One approach to choosing the control variate function 𝑔 𝑗 (𝜽) that is often
used in practice, is to (i) use SGD to find an approximation, �̂� , to the mode

3.3 Stochastic Gradient Langevin Dynamics 73

of the distribution 𝜋; and (ii) set 𝑔 𝑗 (𝜽) = ∇ log 𝜋 𝑗 (�̂�). This leads to the
following control variate estimator,

∇(𝑚) log 𝜋cv(𝜽) =
𝑁∑︁
𝑗=1

∇ log 𝜋 𝑗 (�̂�) +
𝑁

𝑚

∑︁
𝑗∈S𝑚

(
∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)

)
.

(3.8)
Implementing such an estimator involves an initial up-front cost for finding
a suitable �̂� and then calculating, storing, and summing ∇ log 𝜋 𝑗 (�̂�) for
𝑗 = 1, . . . , 𝑁 . For these types of control variate approaches, the main cost
is from finding a suitable �̂� . Although, once found, we can then use �̂� as a
starting value for the SGLD algorithm, replacing 𝜽0 with �̂� in Algorithm 3,
which can significantly reduce the burn-in phase.

The advantage of using the control variate-based estimator can be seen
if we compare the variance bounds of this estimator against the simple esti-
mator. If we assume that each log 𝜋 𝑗 (𝜽) is twice continuously differentiable
on R𝑑 and has Lipschitz-continuous gradients, then there exist positive
constants 𝐿 𝑗 > 0 for all 𝑗 = 1, . . . , 𝑁 , such that

∥∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (𝜽 ′)∥ ≤ 𝐿 𝑗 ∥𝜽 − 𝜽 ′∥. (3.9)

Lemma 3.1 and several subsequent results provide bounds on the trace
of the variance matrix of each estimator of ∇ log 𝜋(𝜽). Since variances are
non-negative, this bounds the variances of each individual component. Also,
since all eigenvalues of a variance matrix are non-negative, it bounds the
largest of these; i.e. the variance of the worst-behaved linear combination
of components. Finally, for any 𝑑-vector random variable 𝝃 with E [𝝃] = 0,

tr(Var [𝝃]) = E
[
𝑑∑︁
𝑖=1

b2
𝑖

]
= E

[
∥𝝃∥2

]
≥ Var [∥𝝃∥] ,

so the bounds also apply to the variance of the Euclidean norm of the
gradient. For any random vector 𝝃 with E [𝝃] = 0, we refer to the important
quantity of E

[
∥𝝃∥2

]
= tr(Var [𝝃]) as its pseudo-variance.

Lemma 3.1 Assume condition (3.9), then there are constants 𝐶1, 𝐶2 > 0
where the pseudo variances of the simple gradient estimator (3.6) and
control variate-based gradient estimator (3.8) have the following bounds:

tr
(
Var

[
∇(𝑚) log 𝜋(𝜽)

])
≤ 𝐶1

𝑁2

𝑚
, (3.10)

tr
(
Var

[
∇(𝑚) log 𝜋cv(𝜽)

])
≤ 𝐶2∥𝜽 − �̂� ∥2

𝑁2

𝑚
, (3.11)

74 Stochastic Gradient MCMC Algorithms

Proof We prove this result for the control variate-based gradient estimators
(3.8); the result for the simple SGLD estimator (3.6) follows analogously.

We first define 𝝃 := ∇(𝑚) log 𝜋cv(𝜽) − ∇ log 𝜋(𝜽), so that 𝝃 measures the
noise in the gradient estimate and has mean zero. The trace of the variance
in the noise is then given by

E
[
∥𝝃∥2

]
= E

[∇(𝑚) log 𝜋cv(𝜽) − ∇ log 𝜋(𝜽)
2

]
= E

𝑁𝑚 ∑︁

𝑗∈S𝑚

(
∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)

)
−

(
∇ log 𝜋(𝜽) − ∇ log 𝜋(�̂�)

)2
= E

𝑁𝑚 ∑︁

𝑗∈S𝑚

{(
∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)

)
− 1
𝑁

(
∇ log 𝜋(𝜽) − ∇ log 𝜋(�̂�)

)}2
≤ 𝑁2

𝑚2E

[∑︁
𝑗∈S𝑚

(∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)
)
− 1
𝑁

(
∇ log 𝜋(𝜽) − ∇ log 𝜋(�̂�)

)2
]
.

where the final line follows from the triangle inequality and due to inde-
pendence between the ∇ log 𝜋 𝑗 (𝜽) terms in the setting of subsampling with
replacement. For subsampling without replacement, the sampled indices
will be negatively correlated and thus will lead to lower variance. For any
random variable X, we have E

[
∥X − E [X] ∥2

]
≤ E

[
∥X∥2

]
. Using this

result, and the Lipschitz assumption (3.9), leads to

E
[
∥𝝃∥2

]
≤ 𝑁2

𝑚2

∑︁
𝑗∈S𝑚

E

[∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)
2

]
≤ 𝑁2

𝑚
E

[∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)
2

]
≤ 𝑁2

𝑚

1
𝑁

𝑁∑︁
𝑗=1

(
𝐿 𝑗

𝜽 − �̂�)2
=
𝑁2

𝑚

𝜽 − �̂�2 1
𝑁

(
𝑁∑︁
𝑗=1

𝐿2
𝑗

)
,

where the second line follows from the exchangeability of the indices 𝑗
and on that line, 𝑗 , is a single index sampled uniformly at random from
1, . . . , 𝑁 . This proves the stated result and gives 𝐶2 =

1
𝑁

∑𝑁
𝑗=1 𝐿

2
𝑗 . □

If we make the further assumption that for all 𝑗 = 1, . . . , 𝑁 there exists
a positive constant 𝐿 > 0 such that

∥∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (𝜽 ′)∥ ≤ 𝐿∥𝜽 − 𝜽 ′∥ (3.12)

holds. Then, it is straightforward to show that we have the following Lips-

3.3 Stochastic Gradient Langevin Dynamics 75

chitz bound on the gradient of the log-posterior,

∥∇ log 𝜋(𝜽) − ∇ log 𝜋(𝜽 ′)∥ ≤ 𝐿𝑁 ∥𝜽 − 𝜽 ′∥, (3.13)

which now leads to an updated constant 𝐶2 = 𝐿
2 in (3.11) of Lemma 3.1.

By comparing the upper bounds on the variance of the gradients in
(3.10) and (3.11), we can see that when 𝜽 is close to �̂� we would expect the
variance in the control variate estimator to be smaller than for the simple
estimator. Furthermore, in many big data settings where 𝑁 is large, we
would expect by the Bernstein–von Mises theorem (e.g. LeCam, 1986)
that a value of 𝜽 drawn from the posterior distribution to be of distance
𝑂 (𝑁−1/2) from the mode of the distribution �̂� , i.e. we expect ∥𝜽 − �̂� ∥2 to
be𝑂 (𝑁−1). Therefore, compared to the𝑂 (𝑁2/𝑚) variance from the simple
estimator (3.10), we would expect to see a reduced𝑂 (𝑁/𝑚) variance (3.11)
for the control variate gradient estimator. This simple argument suggests
that, for the same level of accuracy, we can reduce the computational cost
of SGLD by𝑂 (𝑁) if we use control variate-based gradient estimators. This
is supported by a number of theoretical results which show that if we ignore
the pre-processing cost of finding �̂� , the computational cost per effective
sample of SGLD with control variates is 𝑂 (1), rather than the 𝑂 (𝑁) cost
for SGLD with the simple gradient estimator (3.6).

A further consequence of these bounds on the variance is that they sug-
gest that if 𝜽 is far from �̂� , then the variance when using control variates
can be larger, potentially substantially larger than that of the simple estima-
tor. This point is illustrated in the top-left panel of Figure 3.2, where the
variance in the simple gradient estimator (3.6) is approximately constant
for all 𝜽 . However, the variance in the control variate gradient estimator
increases as 𝜽 moves away from �̂� . Two natural ways of addressing this
issue have been proposed in the literature. One option is to only use the
control variate estimator when 𝜽 is close enough to �̂� (Fearnhead et al.,
2018), though it is up to the user to define what is “close enough” in prac-
tice. The second approach, a Langevin interpretation of the optimisation
algorithm SAGA, which was proposed in Dubey et al. (2016), is to update
�̂� whilst running the SGLD algorithm. This can be done efficiently by using
𝑔 𝑗 (𝜽) = ∇ log 𝜋 𝑗 (𝜽 𝑘 𝑗), where 𝜽 𝑘 𝑗 is the value of 𝜽 at the most recent itera-
tion of the SGLD algorithm where ∇ log 𝜋 𝑗 (𝜽) was evaluated. This involves
updating the storage of 𝑔 𝑗 (𝜽) and its sum at each iteration; importantly the
latter can be done with an 𝑂 (𝑚) cost.

An alternative approach to reducing the variance, for both the simple
and control variate-based gradient estimators, is to use non-uniformly gen-
erated subsamples within the gradient estimator. This approach, introduced

76 Stochastic Gradient MCMC Algorithms

in Putcha et al. (2023) and known as preferential subsampling, generates
subsamples S𝑚 ⊂ {1, . . . , 𝑁} of size 𝑚 with replacement, where the prob-
ability of drawing the 𝑗 th data point is 𝑝 𝑗 and the expected number of times
that the 𝑗 th data point appears in the subsample is 𝑚𝑝 𝑗 . This then leads to
a new simple, as opposed to CV-based, unbiased gradient estimator

∇(𝑚) log 𝜋ps(𝜽) =
1
𝑚

∑︁
𝑗∈S𝑚

∇ log 𝜋 𝑗 (𝜽)
𝑝 𝑗

, (3.14)

where 𝑝 𝑗 > 0 for all 𝑗 = 1, . . . , 𝑁 and
∑𝑁
𝑗=1 𝑝 𝑗 = 1. The simple gradient

estimator (3.6) is given as a special case when 𝑝 𝑗 = 1/𝑁 for all 𝑗 .
If we define the error in the stochastic gradient as 𝝃 = ∇(𝑚) log 𝜋ps(𝜽) −

∇ log 𝜋(𝜽), then taking expectations over the random subsample, whose
distribution depends on the weights p = (𝑝1, . . . , 𝑝𝑁), leads to the pseudo-
variance of ∇(𝑚) log 𝜋ps(𝜽),

E
[
∥𝝃∥2

]
= tr

(
Var[∇(𝑚) log 𝜋ps(𝜽)]

)
.

Lemma 3.2 The optimal weights p∗ which minimise the pseudo-variance

min
p:𝑝 𝑗 ∈[0,1],

∑
𝑗 𝑝 𝑗=1

tr
(
Var[∇(𝑚) log 𝜋ps(𝜽)]

)
are equivalently found by minimising

min
p

𝑁∑︁
𝑗=1

1
𝑝 𝑗

∇ log 𝜋 𝑗 (𝜽)
2
,

resulting in optimal weights of the form

𝑝∗𝑗 =
∥∇ log 𝜋 𝑗 (𝜽)∥∑𝑁
𝑖=1 ∥∇ log 𝜋𝑖 (𝜽)∥

for 𝑗 = 1, . . . , 𝑁. (3.15)

Proof A full proof of this result is given in Putcha et al. (2023). In
brief, this result follows from two steps. Firstly, a straightforward expan-
sion of tr

(
Var[∇(𝑚) log 𝜋ps(𝜽)]

)
with the gradient estimator given in (3.14)

leads to 1
𝑚

∑𝑁
𝑗=1

1
𝑝 𝑗

∇ log 𝜋 𝑗 (𝜽)
2 + 𝐶, where 𝐶 > 0 is a constant that

is independent of p. Minimising this term with respect to the constraint
{p : 𝑝 𝑗 ∈ [0, 1],

∑
𝑗 𝑝 𝑗 = 1} follows by using Lagrange multipliers.

□

In practice, the optimal weights 𝑝∗𝑗 , which would minimise the gradient
variance, are dependent on the current iterate 𝜽 𝑘 of the SGLD algorithm.
This means that for each iteration 𝑘 in Algorithm 3, every 𝑝 𝑗 for all 𝑗 =

3.3 Stochastic Gradient Langevin Dynamics 77

1, . . . , 𝑁 would need to be updated, which is an 𝑂 (𝑁) calculation and
would defeat the purpose of using subsamples of size 𝑚 ≪ 𝑁 in the SGLD
algorithm. We could instead replace the optimal weights 𝑝∗𝑗 (3.15) with
approximate weights 𝑝 𝑗 , where in (3.15) we replace 𝜽 with an estimate of
the posterior mode �̂� . As discussed in the case of control variate gradient
estimators, finding �̂� requires a one-off pre-processing cost.

Weighted sampling can be combined with the control variate estimator
(3.7) with a natural choice of weights that are increasing with the size of
the derivative of ∇ log 𝜋 𝑗 (𝜽) at �̂� . We can also use stratified sampling to
try to ensure each subsample is representative of the full data. However,
regardless of the choice of gradient estimator, an important question is: how
large should the subsample size 𝑚 be? Taking one iteration of SGLD, the
variance of the noise from the gradient term is dominated by the variance
of the injected noise. As the former is proportional to 𝛿2, and the latter to
𝛿, 𝑚 will be 𝑂 (1) as 𝑁 increases if we choose 𝛿 = 𝑂 (1/𝑁) (the square of
the target size). The choice of step size is discussed further in Section 3.5.

Subsample size could also be dynamically adjusted whilst running the
SGLD algorithm. The idea, which is particularly relevant when using con-
trol variates, is that the accuracy of the estimator of the gradient can vary
considerably with 𝜽 . To counteract this, it may be more efficient to have
a larger subsample size when the variance would be larger. One simple
approach is to specify an upper bound, say𝑉 , on the variance that we would
like to achieve, and consider how to vary subsample size to achieve this.

An extension of the result in Lemma 3.1 can be derived for weighted
gradients if the control variate gradient estimator (3.7) in Lemma 3.1 is re-
placed with the preferential sampling gradient estimator (3.14). This results
in a new upper bound for the variance of the gradient estimator,

tr
(
Var

[
∇(𝑚) log 𝜋cv(𝜽)

])
≤ 1
𝑚
∥𝜽 − �̂� ∥2

𝑁∑︁
𝑖=1

𝐿2
𝑗

𝑝 𝑗
, (3.16)

where 𝑝 𝑗 are subsample weights (3.15) and 𝐿 𝑗 are Lipschitz constants on
the gradient components (3.9). A similar result can be derived for the simple
gradient estimator (3.6). As with the control variate bound in Lemma 3.1,
the bound in (3.16) is also 𝑂 (𝑁). The 𝑂 (1/𝑁) term ∥𝜽 − �̂� ∥2 cancels with
the summation over 𝑁 terms. However, each of the 𝑁 terms is 𝑂 (𝑁) since
each 𝑝 𝑗 is𝑂 (1/𝑁). Choosing appropriate weights 𝑝 𝑗 for each 𝑗 = 1, . . . , 𝑁
reduces the multiplier of 𝑁 .

Given our specified upper bound 𝑉 > 0, we can plug this into (3.16). By
rearranging the inequality and using the optimal weights 𝑝∗𝑗 (3.15), we can

78 Stochastic Gradient MCMC Algorithms

show that the subsample size should be at least

𝑚 >
1
𝑉
∥𝜽 − �̂� ∥2

(𝑁∑︁
𝑖=1

𝐿2
𝑗

𝑝∗
𝑗

)
.

For a fixed bound 𝑉 , fixed 𝑁 and fixed weights 𝑝∗𝑗 , the optimal subsample
size is𝑚 ∝ ∥𝜽−�̂� ∥2,which suggests that for SGLD with control variates, the
subsample size should increase at a rate which is quadratic in the distance
between the current iterate of the SGLD chain 𝜽 𝑘 and the mode of the
posterior distribution �̂� . Whilst the constant of proportionality may be hard
to calculate, a user can choose a constant based on a reasonable average
subsample size they want to achieve – and this would still enforce that we
have similar accuracy for the estimate of the gradient for all iterations of
SGLD.

3.3.2 Example: The Value of Control Variates

Recall the tractable Gaussian posterior example 𝜋(𝜽) = N(𝝁𝑁 ,𝚺𝑁) in
(3.3), where 𝚺𝑁 = (𝑁V−1 + I2)−1 and 𝝁𝑁 = 𝚺𝑁 (V−1 ∑𝑁

𝑗=1 y 𝑗). From
this posterior distribution, we can calculate the full-data gradient, as well
as the simple stochastic (3.6) and control variate-based gradients (3.8).
The gradient for the 𝑗 th component is ∇ log 𝜋 𝑗 (𝜽) = ∇ log 𝑓 (y 𝑗 |𝜽) +
(1/𝑁)∇ log 𝜋0(𝜽) and for this example we can easily derive the poste-
rior mode �̂� = 𝚺𝑁 (V−1 ∑𝑁

𝑗=1 y 𝑗) and use this within the control variate
gradient estimator. For the full-data, simple stochastic, and control variate
gradient estimators we have the following,

∇ log 𝜋(𝜽) =
𝑁∑︁
𝑗=1

∇ log 𝜋 𝑗 (𝜽) = −
𝑁∑︁
𝑗=1

V−1y 𝑗 − (𝑁V−1 + I2)𝜽 ,

∇(𝑚) log 𝜋(𝜽) = 𝑁

𝑚

∑︁
𝑗∈S𝑚

∇ log 𝜋 𝑗 (𝜽) = −
𝑁

𝑚

∑︁
𝑗∈S𝑚

V−1y 𝑗 −
(
𝑁V−1 + I2

)
𝜽 ,

3.3 Stochastic Gradient Langevin Dynamics 79

∇(𝑚) log 𝜋cv(𝜽) =
𝑁∑︁
𝑗=1

∇ log 𝜋 𝑗 (�̂�) +
𝑁

𝑚

∑︁
𝑗∈S𝑚

(
∇ log 𝜋 𝑗 (𝜽) − ∇ log 𝜋 𝑗 (�̂�)

)
= −

𝑁∑︁
𝑗=1

V−1y 𝑗 − (𝑁V−1 + I2)�̂� +
(
𝑁V−1 + I2

) (
�̂� − 𝜽

)
= −

𝑁∑︁
𝑗=1

V−1y 𝑗 − (𝑁V−1 + I2)𝜽 .

For this Gaussian example, with the control variate estimator set to the pos-
terior mode, the control variate-based gradient results in the same gradient
estimator as the full-data gradient. The simple gradient estimator (3.6) gives
an unbiased estimate of the full-data gradient, however, for small subsam-
ple sizes, this estimator can lead to poor posterior approximations. For this
particular model, it is possible to separate the data y 𝑗 from the parameters
𝜽 in such a way that the gradient estimator can be updated at each Monte
Carlo iteration without re-evaluating the data, i.e. the data component of the
gradient could be pre-computed and stored. Therefore, for this particular
model, the simple SGLD gradient estimator would not be recommended as
the model structure easily leads to more efficient gradient estimators. How-
ever, deriving better gradient estimators, such as for this Gaussian posterior
model, is usually only possible for simple models and therefore the simple
unbiased gradient estimator (3.6) is still a popular choice within the SGLD
scheme (Algorithm 3) for general models.

Figure 3.2 shows the posterior approximation for the Gaussian model
using the three gradient estimators, where stochastic gradients are calcu-
lated using 1% of the full dataset. The ULA sampler (top-right) without a
Metropolis–Hastings correction produces an accurate, albeit slightly biased,
approximation similar to the SGLD with control variates (SGLD-CV) algo-
rithm (bottom-right), which has the same gradient estimator for this model.
The SGLD algorithm (bottom-left) has the correct posterior mean but pro-
duces an over-dispersed approximation to the posterior variance. Reducing
the stochasticity in the gradient estimator, for example, by increasing the
subsample size, will lead to improved empirical performance. This is a
well-known feature of the SGLD algorithm and its theoretical properties
are discussed in the next section.

80 Stochastic Gradient MCMC Algorithms

0.50 0.25 0.00 0.25 0.50
θ

5.0

2.5

0.0

2.5

5.0

7.5

Va
ria

nc
e

(lo
g1

0)
Variance of stochastic gradients

SGLD
SGLD-CV

0.05 0.00 0.05 0.10
θ

0

10

20

30

40

ULA sampler

0.05 0.00 0.05 0.10
θ

0

10

20

30

40
SGLD sampler 1% data

0.05 0.00 0.05 0.10
θ

0

10

20

30

40

SGLD-CV sampler 1% data

Figure 3.2 Top left: Variance of the estimated gradients taken
over a range of \ (1) for the first component of 𝜽 . The variance for
the SGLD estimator is stable across \ (1) , whereas the variance in
the SGLD-CV gradient estimator increases as |\ (1) − \̂ (1) |
increases. The remaining plots give the posterior approximation to
the first marginal component \ (1) for ULA, SGLD and SGLD-CV,
with the solid black line representing the true density.

3.3.3 Convergence Results for Stochastic Gradient Langevin
Dynamics

The SGLD algorithm provides a simple and efficient approach for sampling
from a posterior distribution 𝜋. However, a key question is whether errors
can accumulate over many SGLD iterations, leading to poor approximate
samples. Fortunately, under suitable regularity conditions on 𝜋, theoretical
results indicate that SGLD can avoid persistent error accumulation. A key

3.3 Stochastic Gradient Langevin Dynamics 81

assumption is that the drift in the underlying Langevin diffusion pushes the
state 𝜽 toward regions of high probability under 𝜋. This ensures that the
diffusion is geometrically ergodic - i.e. it forgets its initial position at an
exponential rate. As a result, the SGLD-generated samples tend to remain
in the regions of high probability under 𝜋.

There are two main theoretical approaches for analyzing the accuracy of
SGLD. (i) We can consider the accuracy of estimating expectations of the
formE𝜋 [ℎ(𝜽)] , for some test function ℎ(𝜽) under the posterior distribution
𝜋. This involves taking the average of ℎ(𝜽 𝑘) over 𝑛 SGLD iterates {𝜽 𝑘}𝑛𝑘=1.
The mean squared error (MSE) between this Monte Carlo average and the
true expectation E𝜋 [ℎ(𝜽)] provides one measure of SGLD accuracy. Teh et
al. (2016) studied this error metric in the setting where the SGLD step size
𝛿𝑘 decays over iterations. (ii) Alternatively, we can bound the error between
the distribution of the SGLD iterates and the posterior 𝜋 after 𝑛 steps. This
involves analysing the total variation, or Wasserstein distance, between the
marginal distribution of the SGLD chain at iteration 𝑛 (i.e. �̃�𝑛) and 𝜋. Since
SGLD is based on the Langevin diffusion, its ergodicity properties can be
leveraged to prove the marginal distributions converge to 𝜋.

Consider approach (i). The MSE of the SGLD estimator can be upper
bounded by𝐶𝑁 (𝛿2+1/𝑛𝛿),where𝐶𝑁 is a constant dependent on the dataset
size 𝑁 . The 𝛿2 term reflects the squared bias and 1/𝑛𝛿 is the variance term.
For a fixed computational budget 𝑛, the bias increases if the step size 𝛿
increases, while the variance decreases with increasing 𝛿. Teh et al. (2016)
showed that in the setting of a decreasing step size 𝛿𝑘 , in order to minimise
the asymptotic MSE, the optimal 𝛿 decays at rate of 𝑛−1/3. This yields an
MSE rate of 𝑛−2/3, which is slower than the 𝑛−1 rate for standard Monte
Carlo methods. The slower convergence arises from controlling both bias
and variance, which is similar to other asymptotically biased Monte Carlo
methods. On the other hand, for larger computational budgets (i.e. larger
𝑛), exact MCMC will outperform SGLD, because unlike for exact MCMC
methods, the bias from SGLD is non-vanishing.

For approach (ii), one quantifies the accuracy of SGLD via the accuracy
of the marginal distribution of the SGLD samples, 𝜽 𝑘 , at iteration 𝑘 . We
denote this marginal distribution by �̃�𝑘 . Accuracy is commonly measured
by the Wasserstein distance (3.4) between �̃�𝑘 and the posterior distribution
𝜋, as this makes the analysis more tractable. However, care is needed when
interpreting the Wasserstein distance as it is not scale-invariant, i.e. chang-
ing the units scales the distance. Additionally, for a fixed level of accuracy
in each marginal, the distance grows as 𝑑1/2 with dimension 𝑑.

Much of the theory for ULA and SGLD assumes the log posterior density,

82 Stochastic Gradient MCMC Algorithms

log 𝜋(𝜽), is smooth and strongly concave. The key assumptions for analysis
of these algorithms are that log 𝜋(𝜽) is 𝑙-convex (3.18) and log 𝜋(𝜽) is
continuously differentiable with 𝐿-Lipschitz gradients (3.17). This means
there exist constants 0 < 𝑙 ≤ 𝐿 such that for all 𝜽 and 𝜽 ′:

∥∇ log 𝜋(𝜽 ′) − ∇ log 𝜋(𝜽)∥ ≤ 𝐿∥𝜽 − 𝜽 ′∥, and (3.17)

−⟨∇ log 𝜋(𝜽) − ∇ log 𝜋(𝜽 ′), 𝜽 − 𝜽 ′⟩ ≥ 𝑙

2
∥𝜽 − 𝜽 ′∥2, (3.18)

where we define ^ = 𝐿/𝑙 as the condition number. The first condition
(3.17) bounds how fast the Langevin drift can change, and thus controls
the step size (which should be 𝛿 < 1/𝐿). The second assumption (3.18)
ensures that the drift term pushes 𝜽 towards high-density regions, making
the Langevin diffusion geometrically ergodic. Together, these assumptions
imply an upper and lower bound on the directional derivatives of the log pos-
terior density. The bounds enable stable discretisation and prevent persistent
error accumulation in the SGLD algorithm. They also imply log 𝜋(𝜽) is uni-
modal. By leveraging strong concavity, the resulting theory provides step
size conditions and rates of convergence for ULA/SGLD. When log 𝜋(𝜽)
is non-strongly concave, alternative assumptions are required (Raginsky
et al., 2017; Majka et al., 2020), for instance that log 𝜋(𝜽) is dissipative, i.e.
⟨𝜽 ,∇ log 𝜋(𝜽)⟩ ≥ 𝑎∥𝜽 ∥2 − 𝑏, for some 𝑎 > 0 and 𝑏 ≥ 0.

Under the above assumptions (3.17)-(3.18), Dalalyan and Karagulyan
(2019) showed that running the SGLD algorithm with a step size parameter
𝛿 ≤ 2/(𝑙 + 𝐿), the Wasserstein-2 distance d𝑊2 (�̃�𝑛, 𝜋) between the SGLD
marginal �̃�𝑛 at iteration 𝑛 and the posterior 𝜋 can be bounded as:

d𝑊2 (�̃�𝑛, 𝜋) ≤ (1 − 𝑙𝛿)𝑛d𝑊2 (�̃�0, 𝜋) + 𝐶1(𝛿𝑑)1/2 + 𝐶2𝜎(𝛿𝑑)1/2, (3.19)

where 𝑙, 𝐶1, 𝐶2 are constants, 𝑑 is the dimension, and 𝜎2 is an upper bound
on the variance of any individual component of the stochastic gradient
(3.10). In the case of ULA, 𝜎2 = 0. The first term in the upper bound
decays exponentially, controlling bias from the initial distribution of the
algorithm �̃�0 where the Markov chain is initialised from. The second term
represents the error that results from the Euler–Maruyama discretisation
of the Langevin diffusion. The final term relates to the variance in the
stochastic gradient. In the case of the simple gradient estimator (3.6) the
variance is 𝑂 (𝑁2/𝑚) and the final term in the bound is 𝑂 (𝑁

√︁
(𝛿𝑑/𝑚)),

which is then the dominating term in the upper bound.
Given that the main motivation of SGLD is to perform Bayesian inference

over large-scale data, a natural question is to ask how does SGLD scale as
data size 𝑁 increases? One way of addressing this is to ask, as 𝑁 increases,

3.3 Stochastic Gradient Langevin Dynamics 83

what is the computational cost of running SGLD so that we have a fixed
level of approximation? We need to define our measure of approximation
appropriately to account for the fact that 𝜋 will change as 𝑁 increases:
under certain assumptions, such as the Bernstein–von Mises (LeCam, 1986)
assumption, the variance will decay as 1/𝑁 . This has been investigated
by Nagapetyan et al. (2017) and Baker et al. (2019) who consider using
control variates as a pre-processing step, which has a computational cost
that is linear in 𝑁 . Ignoring the cost of this pre-processing step for SGLD,
using control variates asymptotically has a computational cost per effective
sample that is constant. By comparison, the computational cost per effective
sample of SGLD with the simple estimator of the gradient (3.6) is linear in
𝑁 .

Example: Theoretical Properties on a Gaussian Target Distribution
We can gain insight into the properties of the SGLD algorithm by returning
to our running Gaussian example (3.3). Recall that the posterior under this
model is a bivariate Gaussian distribution 𝜽 |y ∼ N(𝝁𝑁 ,𝚺𝑁). In (3.3), we
assumed that the covariance matrix 𝚺𝑁 was diagonal, however, we will
now instead consider a general symmetric positive semi-definite matrix.
We can express the variance matrix in terms of some rotation matrix P
and a diagonal matrix D, whose entries satisfy the condition 𝜎2

1 ≥ 𝜎2
2 , i.e.

𝚺𝑁 = P⊤DP. Under this Gaussian posterior model, the drift term of the
Langevin diffusion is

∇ log 𝜋(𝜽) = −𝚺−1
𝑁 (𝜽 − 𝝁𝑁) = −P⊤D−1P(𝜽 − 𝝁𝑁).

The 𝑘 + 1th iteration of the SGLD algorithm is

𝜽 𝑘+1 = 𝜽 𝑘 −
𝛿

2
P⊤D−1P(𝜽 𝑘 − 𝝁𝑁) + 𝛿𝝂𝑘 +

√
𝛿Z𝑘 , (3.20)

where Z𝑘 is a vector of two independent standard Gaussian random variables
and 𝝂𝑘 is the error induced by our stochastic estimate of ∇ log 𝜋(𝜽 𝑘). The
entries of D−1 correspond to the constants that appear in assumptions (3.17)-
(3.18), with 𝑙 = 1/𝜎2

1 and 𝐿 = 1/𝜎2
2 , which are discussed further in Section

3.5 in terms of their impact on the step size parameter 𝛿.
We can simplify the SGLD algorithm by considering updates on the

transformed state �̃� = P(𝜽 − 𝝁𝑁), which gives SGLD updates,

�̃� 𝑘+1 =�̃� 𝑘 −
𝛿

2
D−1�̃� 𝑘 + 𝛿P𝝂 +

√
𝛿PZ

=

(
1 − 𝛿/(2𝜎2

1) 0
0 1 − 𝛿/(2𝜎2

2)

)
�̃� 𝑘 + 𝛿P𝝂𝑘 +

√
𝛿PZ𝑘 ,

84 Stochastic Gradient MCMC Algorithms

where the variance of PZ𝑘 is still the identity as P is a rotation matrix.
The SGLD update is a vector auto-regressive process. This process will

have a stationary distribution if 𝛿 < 4𝜎2
2 = 4/𝐿, otherwise the process

will produce trajectories which will tend to infinity in at least one of the
two components. A similar assumption on the step size is required to es-
tablish the upper bound on d𝑊2 (�̃�𝑛, 𝜋) in (3.19) for log-concave posterior
distributions.

For simplicity in the manner of convergence, we choose 𝛿 < 2𝜎2
2 and

then define _ 𝑗 = 𝛿/(2𝜎2
𝑗) < 1. This then leads to the following SGLD

dynamics for each component, 𝑗 = 1, 2

\̃
(𝑗)
𝑘+1 = (1 − _ 𝑗)

𝑘 \̃
(𝑗)
0 +

𝑘∑︁
𝑖=1

(1 − _ 𝑗)𝑘−𝑖
(
𝛿P𝝂𝑖 +

√
𝛿PZ𝑖

) (𝑗)
, (3.21)

where \̃ (𝑗)
𝑘

is the 𝑗 th component of �̃� 𝑘 . From this, we immediately see
from the first term on the right-hand side of (3.21) that the SGLD algo-
rithm forgets its initial condition exponentially quickly. However, the rate
of exponential decay is slower for the component with the larger marginal
variance, i.e. 𝜎2

1 . Furthermore, as the step size 𝛿 is constrained by the
smaller marginal variance 𝜎2

2 , this rate will have to be slow if 𝜎2
2 ≪ 𝜎2

1 ;
this suggests that there are benefits from re-scaling the posterior so that the
marginal variances of different components are approximately equal.

Taking the expectation of (3.21), with respect to 𝝂 and Z, and letting
𝑘 → ∞, results in SGLD dynamics that have the correct limiting mean,
but with an inflated variance. This is most easily seen if we assume that
the variance of P𝝂 is independent of position. In this case, the stationary
distribution of SGLD will have a variance of

Var �̃�
[
�̃�
]
=

(
(1 − (1 − _1)2)−1 0

0 (1 − (1 − _2)2)−1

)
(𝛿2𝚺𝑁 + 𝛿I2),

where I2 is a 2-dimensional identity matrix. The marginal variance for
component 𝑗 is thus

𝜎2
𝑗

1 + 𝛿Σ 𝑗 𝑗
1 − 𝛿/(4𝜎2

𝑗
)
= 𝜎2

𝑗

(
1 + 𝛿Σ 𝑗 𝑗

)
+ 𝛿

4
+𝑂 (𝛿2).

The inflation in variance comes both from the noise in the estimate of
∇ log 𝜋(𝜽), which is the 𝛿Σ 𝑗 𝑗 factor, and the Euler approximation, which
supplies the additive constant, 𝛿/4. For more general posterior distributions,
the mean of the stationary distribution of the SGLD algorithm will not
necessarily be correct, but we would expect the mean to be more accurate
than the variance, with the variance of SGLD being greater than that of the

3.4 A General Framework for stochastic gradient MCMC 85

true posterior. This analysis further suggests that, for posterior distributions
which are close to Gaussian, it may be possible to perform a better correction
to compensate for the inflation of the variance. For example, we could
replace Z𝑘 with Gaussian random variables where the covariance matrix is
chosen such that the covariance matrix of 𝛿𝝂𝑘 +

√
𝛿Z becomes the identity

matrix.

3.4 A General Framework for stochastic gradient MCMC
Stochastic gradient MCMC is not limited to approximating the Langevin
diffusion. We can construct other diffusion processes that also have 𝜋 as their
stationary distribution. By approximating the dynamics of these alternative
diffusions, we can develop stochastic gradient versions of many popular
MCMC algorithms beyond the Langevin method.

Ma et al. (2015) proposed a general framework for stochastic gradient
MCMC that extends the approach beyond the Langevin diffusion. This
framework allows us to develop stochastic gradient analogues of algorithms
like Hamiltonian Monte Carlo (HMC) (as introduced in Section 2.2), which
leverages Hamiltonian dynamics. stochastic gradient HMC (SGHMC) has
been shown to display improved mixing properties compared to stochastic
gradient Langevin dynamics.

Beyond both SGLD and SGHMC, stochastic gradient MCMC approaches
provide a general and flexible framework to adapt many MCMC algorithms
to large datasets where full-data MCMC is infeasible. By approximating the
dynamics of various diffusions with the correct stationary distribution, it
is possible to develop fast, scalable MCMC algorithms tailored to different
posterior geometries and datasets.

We introduce a general class of diffusion models, that may also include
auxiliary variables, and we denote the full state by 𝝑 ∈ R𝑑𝝑 . This state
contains our variable of interest 𝜽 , as well as an auxiliary variable p.
For example, in the case of the overdamped Langevin diffusion, 𝝑 = 𝜽 ,
and extending the state space to include a velocity variable p allows for
the underdamped Langevin diffusion of Section 1.4.3, which relates to
Hamiltonian MCMC, giving 𝝑 = (𝜽 , p).

We define the general stochastic differential equation for 𝝑 as

d𝝑 =
1
2

b(𝝑)d𝑡 +
√︁

D(𝝑)d𝑊𝑡 , (3.22)

where b(𝝑) is the drift term, D(𝝑) is a positive semidefinite diffusion matrix

86 Stochastic Gradient MCMC Algorithms

with matrix square root
√︁

D(𝝑) and 𝑊𝑡 denotes 𝑑𝝑-dimensional Brownian
motion. Ma et al. (2015) provide a general framework for how to choose
b(𝝑) and D(𝝑) to achieve a desired stationary distribution. Given a general
function 𝐻 (𝝑), where exp{−𝐻 (𝝑)} is integrable, simulating from an SDE
with drift term,

b(𝝑) = − [D(𝝑) +Q(𝝑)] ∇𝐻 (𝝑) + Γ(𝝑), where (3.23)

Γ𝑖 (𝝑) =
𝑑∑︁
𝑗=1

𝜕

𝜕𝝑 𝑗
(D𝑖 𝑗 (𝝑) +Q𝑖 𝑗 (𝝑)),

ensures that the stationary distribution of (3.22) is proportional to exp{−𝐻 (𝝑)}.
The matrix Q(𝝑) is a skew-symmetric curl matrix which controls the de-
terministic traversing effects of the SDE sampler, whereas D(𝝑) controls
the diffuse dynamics of the process. The general SDE (3.22) can be de-
composed into (i) Riemannian-Langevin dynamics which are reversible
and controlled by D(𝝑) and (ii) deterministic Hamiltonian dynamics which
are irreversible and controlled by Q(𝝑). For the Langevin-type algorithms,
where Q(𝝑) = 0, it can be shown that they are able to quickly converge
towards a mode of the distribution and diffusively explore the region around
the mode. For the deterministic Hamiltonian Monte Carlo algorithm, where
D(𝝑) = 0, the algorithm excels at deterministically traversing along level
sets of the Hamiltonian.

To approximately sample from the SDE we discretise the dynamics using
the same Euler–Maruyama scheme used for the Langevin diffusion (3.1),
i.e.,

𝝑𝑘+𝛿 = 𝝑𝑘 −
𝛿

2
[(D(𝝑𝑘) +Q(𝝑𝑘))∇𝐻 (𝝑𝑘) + Γ(𝝑𝑘)] +

√
𝛿Z, 𝑘 ≥ 0,

(3.24)
where Z ∼ N(0,D(𝝑𝑘)). If 𝝑 = 𝜽 , the posterior distribution 𝜋 is the
stationary distribution for the choice 𝐻 (𝝑) = − log 𝜋(𝜽). If we include an
auxiliary variable, i.e. 𝝑 = (𝜽 , p), and we choose 𝐻 (𝝑) = − log 𝜋(𝜽) +
𝐾 (p) for some user-chosen function 𝐾 (·), then 𝜋 is the 𝜽-marginal of the
stationary distribution.

From the general SDE framework (3.22), we can obtain stochastic gradi-
ent MCMC (SGMCMC) algorithms by replacing ∇𝐻 (𝝑𝑘) in (3.24) with an
unbiased estimate ∇̂𝐻 (𝝑𝑘) that is evaluated on a subsample of the dataset.
As shown in Section 3.3.3, and Figure 3.2, the statistical efficiency of
stochastic gradient algorithms is strongly tied to the variance of the gra-
dient estimate. We can view that the variability of the gradient estimate
inflates the noise input into (3.24) – which will lead to a stationary distribu-

3.4 A General Framework for stochastic gradient MCMC 87

tion whose variance is also inflated. Therefore, where feasible, we should
correct for this. If we define V(𝝑𝑘) = Var

[
∇̂𝐻 (𝝑𝑘)

]
as the variance of the

stochastic gradient, then the conditional variance of 𝝑𝑘+𝛿 given 𝝑𝑘 will be
inflated by 𝛿2B(𝝑𝑘), where

B(𝝑𝑘) =
1
4
(D(𝝑𝑘) +Q(𝝑𝑘))V(𝝑𝑘) (D(𝝑𝑘) +Q(𝝑𝑘))⊤. (3.25)

Correcting for this inflation in the SGMCMC setting leads to a modified
discrete-time algorithm in (3.24), where∇𝐻 (𝝑𝑘) is replaced by the stochas-
tic approximation ∇̂𝐻 (𝝑𝑘) but we also reduce the variance of the noise term,
so Z ∼ N(0,D(𝝑𝑘) − 𝛿B(𝝑𝑘)). The challenge with this idea in practice is
how do we estimate B(𝝑𝑘)?

Through different choices of 𝐻 (𝝑), D(𝝑) and Q(𝝑), we can derive
several SGMCMC algorithms as special cases of the general discretised
SDE (3.24). Some of these special cases will be introduced in the following
sections.

Stochastic Gradient Langevin Dynamics
The SGLD algorithm (introduced in Section 3.3) follows from the dynamics
of the general SDE (3.24) by setting

𝝑 = 𝜽 , 𝐻 (𝝑) = − log 𝜋(𝜽), D(𝝑) = I, Q(𝝑) = 0

to give dynamics

𝜽 𝑘+𝛿 = 𝜽 𝑘 +
𝛿

2
[∇ log 𝜋(𝜽 𝑘)] +

√
𝛿Z, 𝑘 ≥ 0,

which is the same Euler–Maruyama approximation of the Langevin dif-
fusion introduced in (3.2), but where in practice ∇ log 𝜋(𝜽 𝑘) would be
replaced with a stochastic gradient estimator, using, for example, (3.6),
(3.8) or (3.14).

Stochastic Gradient Hamiltonian Monte Carlo
The popular HMC algorithm introduced in Section 2.2 can also be derived
as a special case of the general SDE dynamics (3.24). As discussed in
Section 2.2, the HMC algorithm introduces a velocity component p to
improve the mixing of the Markov chain and a mass matrix M, where
the Hamiltonian dynamics are used to update the position 𝜽 and velocity
components p. In practice, the HMC algorithm uses the leapfrog numerical
integration scheme to minimise numerical errors, however, for the purpose
of illustration, we shall consider the simpler Euler integration scheme for
creating a stochastic gradient HMC algorithm.

88 Stochastic Gradient MCMC Algorithms

The Euler-discretised Hamiltonian dynamics for the state 𝝑 = (𝜽 , p) are(
𝜽 𝑘+𝛿
p𝑘+𝛿

)
=

(
𝜽 𝑘
p𝑘

)
+ 𝛿

2

[
M−1p𝑘
∇ log 𝜋(𝜽 𝑘)

]
, 𝑘 ≥ 0, (3.26)

which fits into the general SDE framework of (3.22) and (3.23) by setting

𝐻 (𝝑) = − log 𝜋(𝜽) + 1
2

p⊤M−1p, D(𝝑) = 0 and Q(𝝑) =
(

0 −I
I 0

)
.

If the gradient ∇ log 𝜋(𝜽) in (3.26) is replaced by a stochastic gradient
∇̂ log 𝜋(𝜽) = ∇ log 𝜋(𝜽) + N(0,V(𝜽)), where V(𝜽) is the variance of the
stochastic gradient, then under this stochastic setting the dynamics in (3.26)
will become

p𝑘+𝛿 = p𝑘 +
𝛿

2
∇ log 𝜋(𝜽) + N(0, 𝛿V(𝜽 𝑘)),

which is known as the naive stochastic gradient HMC (SGHMC) algorithm
(Chen et al., 2014; Ma et al., 2015). It was proved in Chen et al. (2014) that
the naive SGHMC algorithm does not work well as the error from estimating
the gradient will accumulate over iterations and cannot be controlled. To
overcome this, the authors suggest adding a friction term for the velocity,
this is equivalent to using a stochastic gradient version of the underdamped
Langevin dynamics, of Section 1.4.3. The intuition is that the introduction of
friction means that errors from previous iterations will decay geometrically
so that the overall error from using a stochastic gradient can be controlled.
We can further improve accuracy by using the idea of correcting the variance
of the injected noise that is introduced at each iteration.

Returning to the general SDE framework (3.22), the corrected stochastic
gradient HMC algorithm follows by setting

𝝑 = (𝜽 , p), 𝐻 (𝝑) = − log 𝜋(𝜽) + 1
2

p⊤M−1p,

D(𝝑) =
(

0 0
0 C

)
, Q(𝝑) =

(
0 −I
I 0

)
,

where C is as a generic matrix, sometimes known as the friction term, and is
chosen such that C ⪰ 𝛿V(𝜽) is a positive semi-definite matrix. Discretising
this general form SDE with this particular D(𝝑) and Q(𝝑) leads to the
dynamics,(

𝜽 𝑘+𝛿
p𝑘+𝛿

)
=

(
𝜽 𝑘
p𝑘

)
+ 𝛿

2

[
M−1p𝑘

∇̂ log 𝜋(𝜽 𝑘) − CM−1p𝑘

]
+

[
0√
𝛿Z

]
, 𝑘 ≥ 0. (3.27)

3.4 A General Framework for stochastic gradient MCMC 89

The gradient∇ log 𝜋(𝜽 𝑘) is replaced by a stochastic estimator ∇̂ log 𝜋(𝜽 𝑘)
and Z ∼ N(0,C − 𝛿B̂), where B̂ is an estimate of V(𝜽 𝑘).

The efficiency with which an MCMC algorithm can explore a posterior
distribution is heavily tied to the geometry of the posterior. If the 𝜽 com-
ponents of the posterior distribution are strongly correlated, then the step
size will need to be optimised for the component with the smallest vari-
ability in order to ensure that the algorithm does not diverge (as illustrated
in Section 3.3.3 for the case of a Gaussian target distribution). This will
significantly reduce the mixing time of the other components unless the
posterior distribution is reparameterised so that the components of 𝜽 are
uncorrelated and have similar marginal distributions. Within the context of
SGMCMC dynamics, it is possible to develop algorithms that incorporate
reparameterisation by preconditioning the gradients with a positive-definite
matrix G(𝜽). If G(𝜽) is the expected Fisher information of the posterior
distribution, then the SGMCMC dynamics will be locally adapted to the
posterior curvature by exploiting the Riemannian geometry of the posterior
distribution.

Stochastic Gradient Riemannian Langevin Dynamics
Riemannian versions of SGLD (stochastic gradient Riemannian Langevin
dynamics; SGRLD) and SGHMC (stochastic gradient Riemannian Hamil-
tonian Monte Carlo; SGRHMC) also follow as special cases of the general-
form SDE (3.23). We can derive SGRLD by setting

𝝑 = 𝜽 , 𝐻 (𝝑) = − log 𝜋(𝜽), D(𝝑) = G(𝜽)−1, Q(𝝑) = 0

which leads to the discrete-time dynamics

𝜽 𝑘+𝛿 = 𝜽 𝑘 +
𝛿

2
[
G(𝜽 𝑘)−1∇̂ log 𝜋(𝜽 𝑘) + Γ(𝜽 𝑘)

]
+
√
ℎZ, 𝑘 ≥ 0,

with Z ∼ N(0,G(𝜽 𝑘)−1) and ∇̂ log 𝜋(𝜽 𝑘) is a stochastic estimator for
∇ log 𝜋(𝜽 𝑘). The term G(𝜽 𝑘)−1∇ log 𝜋(𝜽 𝑘) is the natural gradient of the
posterior distribution which gives the direction of steepest ascent by taking
into account the geometry implied by G(𝜽 𝑘). If G(𝜽) = I, then the direc-
tion of steepest ascent would be given in the Euclidean space. The term
Γ𝑖 (𝜽) =

∑
𝑗

𝜕(G(𝜽)−1)𝑖 𝑗
𝜕𝜽 𝑗

accounts for the curvature of the manifold defined
by G(𝜽). A stochastic gradient HMC implementation that utilises the Rie-
mannian geometry of the posterior distribution can also be derived within
the general SDE framework. Taking the curl matrix Q(𝜽) from SGHMC

90 Stochastic Gradient MCMC Algorithms

and replacing the identity matrices with G(𝜽)−1/2 leads to an SGHMC al-
gorithm that is adaptive to the local posterior geometry.

Theoretical comparison of SGMCMC algorithms
When comparing the variety of SGMCMC algorithms it is natural to con-
sider which algorithm is the most accurate and computationally efficient. It
is possible to compare the theoretical convergence rates for some of these
algorithms. In the case of SGHMC and SGLD, and in the context of smooth
and strongly log-concave posteriors, it is possible to derive bounds on the
Wasserstein-2 distance between the posterior and the SGMCMC sample
distribution. These results are non-asymptotic and bound the Wasserstein-2
error for some 𝑘 iterations of the SGMCMC algorithm using optimally
tuned step sizes. These results show that if the stochastic gradients have
low variance, then SGLD requires𝑂 (𝑑2/𝜖2) iterations for a given accuracy
𝜖 , while SGHMC needs only 𝑂 (𝑑/𝜖). So SGHMC is generally preferred,
with increasing benefits in higher dimensions (see Figure 3.4 for a numer-
ical illustration). However, there is a phase transition in SGHMC as the
gradient noise variance grows, above a threshold SGHMC behaves like
SGLD, requiring 𝑂 (𝑑2/𝜖2) iterations.

3.5 Guidance for Efficient Scalable Bayesian Learning
Each of the SGMCMC algorithms introduced has tuning parameters that
need to be chosen by the user when running these algorithms. Some SGM-
CMC algorithms, such as SGLD with control variates, require additional
tuning parameters, e.g. choosing a control variate, but common to all SGM-
CMC algorithms is the step size parameter 𝛿, the subsample size 𝑚, and
the number of Monte Carlo iterations 𝑛.

For MCMC algorithms with Metropolis–Hastings corrections, such as
MALA (Section 2.1.4) and HMC (Section 2.2), and which do not utilise
data subsampling, the main tuning parameter is the step size 𝛿. Existing
theoretical results have established that the optimal 𝛿 should be chosen
such that the Metropolis–Hastings acceptance rate is 57.4% (in the case of
MALA) or at least 65% (in the case of HMC). Under certain assumptions
on the posterior distribution, this choice minimises the integrated auto-
correlation time of the Markov chain produced by these algorithms (see
Section 1.3.2 for further details).

In the case of SGMCMC algorithms, which do not include a Metropolis–
Hastings acceptance step, minimising the auto-correlation of the Markov

3.5 Guidance for Efficient Scalable Bayesian Learning 91

chain is not an appropriate objective for optimising 𝛿. Intuitively, this is
because the auto-correlation can be reduced by simply letting 𝛿→∞, but in
the case of the ULA and SGMCMC algorithms, this will increase the bias in
the discretised diffusion process and lead to poor posterior approximations.
This is not an issue for MALA and HMC as the Metropolis–Hastings
acceptance rate will tend to zero as 𝛿→∞, and so in this setting, minimising
the auto-correlation time will balance between making large jumps in the
posterior space (i.e large 𝛿) against having a reasonable acceptance rate.
Alternative metrics are required to minimise the variance in the Markov
chain and account for the asymptotic bias present in SGMCMC algorithms.
A popular choice is the kernel Stein discrepancy (KSD) metric, a kernelised
version of the Stein discrepancy discussed in detail in Chapter 6. The KSD
provides a measure of discrepancy between the true posterior distribution
and the Monte Carlo approximation generated by an SGMCMC or other
MCMC algorithm. Using the KSD metric, it is possible to optimise 𝛿 (and
other SGMCMC tuning parameters) by assessing various tuning parameters
over a grid of possible values and selecting the tuning parameters which
minimise the KSD (Coullon et al., 2023). Related ideas, based on Stein’s
method and explored in Chapter 6, can be used to optimally thin the Markov
chain to maximise the information about the posterior contained by a smaller
set of Monte Carlo samples.

The step size parameter 𝛿 in SGLD can be chosen using the convergence
results in Section 3.3.3. The upper bound on the Wasserstein-2 distance
from Dalalyan and Karagulyan (2019), under assumptions 3.17 and 3.18,
requires 𝛿 ≤ 2/(𝑙 + 𝐿) in order to establish convergence for the SGLD
algorithm. Setting 𝛿 to be too small leads to slow convergence of the
Markov chain, but a step size that is too large can cause the SGLD algorithm
to diverge. If 𝑙 and 𝐿 are known, then this information can be used to set
𝛿. For example, returning to the running Gaussian example (3.3) where
the posterior distribution is 𝜽 |y ∼ N(𝝁𝑁 ,𝚺𝑁), we know that ∇ log 𝜋(𝜽) =
−𝚺−1

𝑁 (𝜽−𝝁𝑁) and that the Lipschitz constant 𝐿 measures the largest change
in the gradient. Taking the Hessian i.e., ∇∇ log 𝜋(𝜽) = −𝚺−1

𝑁 , the Lipschitz
constant is equal to the spectral norm of the inverse covariance matrix
𝐿 = ∥∇ log 𝜋(𝜽)∥ ≤ ∥∇∇ log 𝜋(𝜽)∥ ≤ ∥𝚺−1

𝑁 ∥ = 1/_min(𝚺𝑁), which is
equal to the reciprocal of the smallest eigenvalue of the covariance matrix.
As for the smoothness parameter 𝑙, this is the largest eigenvalue of the
Hessian 𝑙 = ∥∇∇ log 𝜋(𝜽)∥ ≥ _max(𝚺𝑁). Therefore, if 𝛿 ≤ 2/(𝑙 + 𝐿), then
𝛿 ≈ _min(𝚺𝑁)/_max(𝚺𝑁), which is equal to the condition number ^ = 𝐿/𝑙.

We can assess the relationship between the step size parameter and the
properties of the Gaussian model by considering two covariance functionsΣ

92 Stochastic Gradient MCMC Algorithms

from the Gaussian model (3.3), where 𝚺 (𝑖) =
(
1 0
0 10

)
and 𝚺 (𝑖𝑖) =

(
1 3
3 10

)
.

Under covariance 𝚺 (𝑖) , the variables 𝜽 are uncorrelated whereas for 𝚺 (𝑖𝑖)
there is imposed correlation between the components of 𝜽 . This leads to con-
dition numbers ^ (𝑖) ≈ 10−3 and ^ (𝑖𝑖) ≈ 10−4 for 𝚺 (𝑖) and 𝚺 (𝑖𝑖) , respectively.
In Figure 3.3, we plot the Wasserstein-2 distance between the true Gaussian
posterior distribution with 𝑁 = 1000 data points with the approximation
generated from 𝑛 = 10000 iterations of the SGLD algorithm, where the
step size parameter 𝛿 is varied over a grid of values 𝛿 ∈ {10−5, . . . , 10−1}.
The left panel of Figure 3.3 is for the model with uncorrelated covariance
matrix 𝚺 (𝑖) and the right panel uses 𝚺 (𝑖𝑖) . For both experiments, there is a
value for 𝛿 which minimises the Wasserstein-2 distance and in the case of
uncorrelated variables, i.e. 𝚺 (𝑖) , the optimal 𝛿 is larger than in the correlated
case 𝚺 (𝑖𝑖) . The dot indicates the step size recommended by the theoretical
results, i.e. 𝛿opt = 𝐿/𝑙, which closely aligns with the optimal grid search
result.

In general settings, however, it is not possible to calculate the optimal
step size parameter as this depends on properties of the unknown posterior
distribution. Under certain conditions on the posterior distribution, and
assuming that 𝑁 is sufficiently large, then by the Bernstein–von Mises
theorem, the variance of the posterior distribution will be of order𝑂 (𝑑/𝑁).
Therefore, setting the step size parameter to be proportional to 1/𝑁 , i.e. 𝛿 ∝
1/𝑁, gives a simple heuristic step size which is often used by practitioners.
Note that, for the Gaussian posterior example given above, this heuristic
would lead to a step size 𝛿 = 1/𝑁 = 10−3, which matches the optimal step
size parameter for the setting with uncorrelated 𝜽 components, i.e. 𝚺 (𝑖) (see
the left panel in Figure 3.3). However, this step size would be too large for
the correlated setting with covariance Σ (𝑖𝑖) (see right panel in Figure 3.3).
An alternative perspective discussed in Section 3.3.1 is that for the SGLD-
type algorithms, the variance of the gradient component of the Langevin
dynamics is 𝑂 (𝛿2) and therefore dominated by the 𝑂 (𝛿) variance from
the injected noise of the process. For the SGLD algorithm with a simple
unbiased gradient estimator, the variance of the gradient is 𝑂 (𝑁2), and so
a natural choice for 𝛿 to control the variance of the stochastic gradient is
𝛿 = 1/𝑁 .

3.5.1 Experiments on a Logistic Regression Model
The logistic regression model, first introduced in Section 1.2.1, is used to
predict the probability of binary outcomes 𝑦 𝑗 ∈ {0, 1} given covariates

3.5 Guidance for Efficient Scalable Bayesian Learning 93

4 2
Step size (log10)

0.6

0.8

1.0

W
as

se
rs

te
in

-2
 D

is
ta

nc
e

4 2
Step size (log10)

0.4

0.6

0.8

1.0

W
as

se
rs

te
in

-2
 D

is
ta

nc
e

Figure 3.3 The Wasserstein-2 distance between the true and
approximate posterior distributions when varying the step size
parameter 𝛿. Left panel is for the model with covariance Σ (𝑖) .
Right panel is for the model with covariance Σ (𝑖𝑖) .

x 𝑗 ∈ R𝑑𝑥 . Assuming a Gaussian prior for the regression coefficients 𝜽 ∼
N(0, Σ𝜽), the posterior distribution, conditional on the dataD = {𝑦 𝑗 , x 𝑗}𝑁𝑗=1,

is given by the unnormalised density

𝜋(𝜽) := 𝜋(𝜽 |D) ∝ exp
{
−1

2
𝜽𝑇Σ−1

𝜽 𝜽

} 𝑁∏
𝑗=1

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x𝑇

𝑗
𝜽}
.

Metropolis–Hastings-based MCMC algorithms, such as MALA(Section
2.1.4) and HMC (Section 2.2), can be used to sample from the posterior
distribution of the logistic regression model. However, in the large data set-
ting, these algorithms will converge slowly due to the higher computational
cost of evaluating the posterior density, and its gradient, on the full dataset.
Whereas SGMCMC algorithms are faster, per Monte Carlo iteration, but
introduce an asymptotic bias into the posterior approximation.

To assess the statistical accuracy of SGMCMC against exact MCMC
approaches, consider a logistic regression model with 𝑁 = 10000 obser-
vations, which is small enough to allow MALA and HMC approaches to
be computationally feasible. The dataset is split into a training and test
dataset with a 80/20 split. Data are simulated from the logistic regression
model where the dimension of the parameter vector 𝜽 ∈ R𝑑 is varied,
𝑑 ∈ {100, 200, 300, 400, 500}. The statistical accuracy of the posterior ap-
proximation of the SGLD algorithm (Alg. 3) and SGHMC algorithm (3.27),

94 Stochastic Gradient MCMC Algorithms

with and without control variates (3.7), is compared against a long Monte
Carlo run of the NUTS algorithm (Hoffman and Gelman, 2014) using the
Python package BlackJax (Cabezas et al., 2024), which provides a ground-
truth Monte Carlo approximation to the posterior distribution. As noted in
Section 3.5, standard MCMC diagnostics are not applicable for assessing
the convergence of SGMCMC algorithms, and so as a proxy for posterior
accuracy, the mean squared error (MSE) in the estimate of the posterior
mean and variance given by the SGMCMC algorithms is compared against
the posterior mean and variance taken from the NUTS samples. The NUTS
and SGMCMC algorithms are each run for 𝑛 = 10000 iterations and for
the SGMCMC algorithms, a subsample size of 10% is used. Note that the
step size parameter is fixed using the heuristic 𝛿 = 1/𝑁 for all experiments.
Note that improved numerical results could be achieved by optimising the
step size parameter for each dimension 𝑑.

Figure 3.4 shows the MSE in the estimate of E𝜋 [𝜽] and Var𝜋 [𝜽], where
the true expectation and variance are given by the NUTS sampler. The
plotted results are presented as the MSE averaged over the parameter di-
mension. The results show that the SGHMC algorithms are more robust to
higher dimensions than the SGLD-type algorithms. This coincides with the
established theory that compared to SGHMC, SGLD requires more itera-
tions to achieve a similar level of accuracy. Note that for higher-dimensional
problems, it may be necessary to run the SGD optimiser for longer to find
the mode of the distribution that is used in control variate-based SGMCMC
algorithms.

The posterior accuracy results in Figure 3.4 suggest that without in-
creasing the number of Monte Carlo iterations, the SGMCMC algorithms
will produce poorer posterior approximations with increasing parameter di-
mension. The results show that SGMCMC algorithms can produce highly
accurate approximations for the first and second moment of the posterior
distribution, and in the case of SGHMC, the first moment is very similar to
the first moment given by the NUTS sampler. As illustrated previously in
Figure 3.2, SGLD can produce good approximations to the first posterior
moment, but for small data subsamples it tends to produce overestimates
of the second posterior moment. The reason for the poorer posterior ap-
proximation of the SGLD-based samplers compared to the SGHMC-based
samplers can be seen in the Monte Carlo trace plots in Figure 3.5. For the
higher-dimensional setting (𝑑 = 500), we can see that for posterior compo-
nents \1 and \2, the mixing is worse for SGLD and SGLD-CV compared
to SGHMC and SGHMC-CV. This is then reflected in the Monte Carlo ap-
proximation for the posterior mean and variance (Figure 3.4), where SGLD

3.5 Guidance for Efficient Scalable Bayesian Learning 95

200 400
Dimension

0.0000

0.0025

0.0050

0.0075

0.0100

M
SE

SGLD
SGLD-CV
SGHMC
SGHMC-CV

200 400
Dimension

0.00

0.25

0.50

0.75

1.00

1.25

M
SE

1e 5

SGLD
SGLD-CV
SGHMC
SGHMC-CV

Figure 3.4 The mean squared error (MSE) of E𝜋 [𝜽] (left panel)
and Var𝜋 [𝜽] (right panel) compared to the same moments
calculated from the NUTS posterior samples, which are treated as
the ground-truth. The results plotted are for the average MSE
taken over all dimensions of the mean and marginal variance of
𝜋(𝜽).

and SGLD-CV are not as accurate as SGHMC and SGHMC-CV when
𝑑 = 500, but display similar levels of accuracy for 𝑑 = 100 and 𝑑 = 200.
The mixing of the SGLD-based samplers could be improved by hand-tuning
the step-size parameter 𝛿, or preconditioning the gradients to account for
the correlation structure of the posterior distribution.

Beyond posterior accuracy, we can also assess the predictive accuracy
of SGMCMC algorithms against exact full-data MCMC algorithms, in
this case using the NUTS sampler. Figure 3.6 illustrates that SGMCMC
algorithms are competitive against slower Metropolis–Hastings-based al-
gorithms when assessed against predictive accuracy. Figure 3.6 plots the
percentage improvement in log-posterior predictive accuracy for each SGM-
CMC algorithm over the log-posterior predictive accuracy of the NUTS
sampler, which is treated as the gold standard approach. The results are
given for the logistic regression model on a test dataset using posterior
samples over a range of parameter dimensions 𝑑. The results highlight that
SGMCMC algorithms are competitive and potentially superior to slower,
full-data, MCMC algorithms in terms of predictive accuracy, displaying
only a small decrease in efficiency but with a significant computational
advantage.

96 Stochastic Gradient MCMC Algorithms

0 5000 10000
Iterations

0.5

0.4

0.3

0.2

0.1

0.0

θ 1

SGLD

0 5000 10000
Iterations

0.6

0.8

1.0

1.2

θ 2

SGLD

0 5000 10000
Iterations

0.6

0.4

0.2

0.0

0.2

θ 1

SGLD-CV

0 5000 10000
Iterations

0.6

0.8

1.0

1.2

θ 2

SGLD-CV

0 5000 10000
Iterations

0.6

0.4

0.2

0.0

θ 1

SGHMC

0 5000 10000
Iterations

0.6

0.8

1.0

1.2

θ 2

SGHMC

0 5000 10000
Iterations

0.6

0.4

0.2

0.0

0.2

θ 1

SGHMC-CV

0 5000 10000
Iterations

0.6

0.8

1.0

1.2

1.4

θ 2

SGHMC-CV

0 2000 4000
Iterations

0.6

0.4

0.2

0.0

θ 1

NUTS

0 2000 4000
Iterations

0.6

0.8

1.0

1.2

1.4

θ 2

NUTS

Figure 3.5 Trace plots for the first two components of 𝜽 with
𝑑 = 500.

3.5 Guidance for Efficient Scalable Bayesian Learning 97

100 200 300 400 500
Dimension

4

3

2

1

0

1

2

3

Lo
g-

pr
ed

ic
tiv

e
pe

rc
en

ta
ge

 im
pr

ov
em

en
t

SGLD
SGLD-CV
SGHMC
SGHMC-CV

Figure 3.6 Percentage improvement in the log-predictive density
of each SGMCMC algorithm relative to the log predictive density
of the NUTS sampler on the logistic regression model calculated
on a test data set. The dimension of the parameter of interest is
𝑑 ∈ {100, 200, 300, 400, 500}.

3.5.2 Experiments on a Bayesian Neural Network Model
A Bayesian neural network model for multi-class classification was intro-
duced in Section 1.2.3, where the dataset D = {𝑦 𝑗 , x 𝑗}𝑁𝑗=1is comprised of
a collection of 𝐺 classes 𝑦 𝑗 ∈ {1, . . . , 𝐺} and covariates x 𝑗 ∈ R𝑑𝑥 . The
unnormalised posterior density is

𝜋(𝜽) := 𝜋(𝜽 |D) ∝ 𝜋0(𝜽)
𝑁∏
𝑗=1

exp(A⊤𝑦 𝑗+1𝜎(B
⊤x 𝑗 + b) + 𝑎𝑦 𝑗+1), (3.28)

where 𝜎(·) is a softmax activation function (see Section Section 1.2.3 for
details). The model parameters 𝜽 = vec(A,B, a, b) are the weights A,B and
biases a, b of the network model. We shall assume independent standard
Gaussian priors for each parameter, i.e. 𝜽 ∼ N(0, I).

Neural networks are commonly used for image classification tasks.
One of the most fundamental and widely used datasets in image clas-
sification is the MNIST handwritten digit dataset. The MNIST dataset
consists of images of handwritten digits, ranging from zero to nine, i.e.

98 Stochastic Gradient MCMC Algorithms

Figure 3.7 A selection of digits from the MNIST dataset. Image
source - Wikipedia.

𝑦 𝑗 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (see Figure 3.7 for a subsample of the
dataset). Each image is represented by a small square of 28 pixels by
28 pixels which are treated as covariates. Each x 𝑗 ∈ R784 is a vectorisation
of a matrix made up of 28 rows and 28 columns, with each pixel containing
grayscale information representing the darkness of that specific point in
the image. A brighter pixel would have a higher value, while a darker one
would have a lower value.

The Bayesian neural network for this example (3.28) has two layers: an
input layer that receives the information from the 28×28 image, and a hidden
layer containing 100 hidden variables that act as intermediate processing
units. The parameters of the neural network 𝜽 are of the form A ∈ R10×100,

B ∈ R784×100, a ∈ R1×10, and b ∈ R1×100.
The MNIST dataset contains a large collection of 60000 images in the

training set. Each image has a corresponding label, indicating which digit
(0 − 9) it represents. Using SGMCMC algorithms, we can approximate
the posterior distribution of the Bayesian neural network using subsam-
ples of the labelled images and pixel values to train the Bayesian neural
network to recognise patterns and relationships between the pixels and the
corresponding digits.

We use the SGLD and SGHMC algorithms from the Python package
SGMCMCJax (Coullon and Nemeth, 2022), and their control-variate coun-
terparts, to draw samples from the Bayesian neural network posterior (3.28).
We run each algorithm for 2000 iterations and retain every 10th iteration of
the Markov chain. A subsample size of 1% of the full dataset is used for all

3.5 Guidance for Efficient Scalable Bayesian Learning 99

0 50 100 150 200
Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ed
ic

tiv
e

ac
cu

ra
cy

SGLD
SGLD-CV
SGHMC
SGHMC-CV

Figure 3.8 Average posterior predictive accuracy over all classes
for each of the SGMCMC samplers.

SGMCMC samplers. For the control-variate-based algorithms, a stochas-
tic gradient descent algorithm is used to find the posterior mode and the
Markov chain is initialised at the posterior mode.

There is a separate set of 10000 unseen images, also with correspond-
ing labels but hidden from the training process. This test set allows us to
evaluate how well our neural network performs on new data. By feeding
these new images into the network, we can see if the posterior network is
able to accurately classify the images into one of the ten-digit categories
(0-9). Figure 3.8 shows the posterior predictive accuracy for each SGM-
CMC sampler over the number of Monte Carlo iterations (storing every
10th posterior sample). The results show that all of the samplers converge
to approximately 93% accuracy in classifying the MNIST test set digits. The
SGLD and SGHMC samplers converge at a similar rate (in terms of pre-
dictive accuracy). The control variate-based SGLD and SGHMC samplers
also converge at a similar rate to each other but achieve higher predictive
accuracy with fewer Monte Carlo iterations as these samplers are initialised
at the posterior mode and thus remove the burn-in phase of the Monte Carlo
sampler.

100 Stochastic Gradient MCMC Algorithms

3.6 Generalisations and Extensions
The SGMCMC framework outlined in Section 3.4 can be extended beyond
the SGLD algorithm to improve Markov chain mixing. However, two key
assumptions limit the applicability of current SGMCMC algorithms: (i) the
parameters 𝜽 ∈ R𝑑 exist in an unconstrained space, and (ii) the log-posterior
density log 𝜋(𝜽) is a sum over conditionally independent terms.

Assumption (i) precludes estimating 𝜽 on a constrained space (e.g. 𝜽 ∈
[0, 1]𝑑). Assumption (ii) requires data y1, . . . , y𝑁 to be independent or
have limited dependence, restricting the applicability of SGMCMC for
time series or spatial models.

Ongoing research aims to relax these assumptions and expand SGMCMC
to broader model classes. Some promising directions include:

• Transformation techniques to enable sampling on constrained parameter
spaces (Brosse et al., 2017; Bubeck et al., 2018; Hsieh et al., 2018).
• Exploiting short-range dependencies and other model structures to allow

subsampling for time series and network data (Li et al., 2016; Ma et al.,
2017; Aicher et al., 2023).
• Leveraging alternative stochastic processes with desired invariant distri-

butions as samplers for models with complex data and parameter struc-
tures (Baker et al., 2018).

By developing specialised subsampling schemes and transformations, it
is possible to make SGMCMC algorithms more applicable to a wider range
of Bayesian models while retaining computational efficiency.

3.6.1 Scalable Inference for Models in Constrained Spaces
Many statistical models contain parameters with inherent constraints, such
as the variance parameter 𝜏2 in a Gaussian distribution (𝜏 ∈ R+) or the
success probability 𝑝 in a Bernoulli model (𝑝 ∈ [0, 1]). Simulating these
constrained parameters using standard Langevin dynamics (3.2) will often
produce samples violating the constraints. For instance, if at iteration 𝑘 of
the SGLD algorithm 𝜽 𝑘 = 𝜏

2
𝑘

is close to zero, then with high probability, the
next iterate 𝜽 𝑘+1 is likely to be negative, breaking the positivity constraint.
One solution is to shrink the step size 𝛿 → 0 as 𝜏2 → 0, but this leads to
poor mixing near the boundary.

A natural approach is to transform the Langevin dynamics so sampling
occurs in an unconstrained space, but the choice of transformation greatly

3.6 Generalisations and Extensions 101

impacts mixing near the boundary. Alternatively, we can project the dy-
namics into the constrained space, however, this yields poorer convergence
compared to the unconstrained setting. The mirrored Langevin algorithm
(Hsieh et al., 2018) was proposed to address this issue. It builds on the mir-
rored descent algorithm (Beck and Teboulle, 2003) from the optimisation
literature to transform constrained sampling into an unconstrained problem
using a mirror map. Compared to a generic mapping function, mirror maps
have additional properties, such as strict convexity, differentiability and di-
verging gradients at the boundary of the domain, which makes mirror map
algorithms well-suited to constrained sampling and optimisation problems.

If we assume that 𝜋(𝜽) is the density of a constrained distribution, namely
that log 𝜋(𝜽) has a bounded convex domain, then assuming that there exists
a mirror map 𝜓(·) which is closed and proper, we can map the variable
𝜽 ∼ 𝜋 from the constrained space (primal space) to the unconstrained
space (dual space), where 𝝑 := ∇𝜓(𝜽) and 𝝑 ∼ a. Under the assumption
that 𝜓 is a convex function that is closed, proper, and twice continuously
differentiable, with Fenchel dual noted as 𝜓∗, then Theorem 1 of Hsieh
et al. (2018) shows that ∇𝜓∗(𝝑) ∼ 𝜋. This result implies that it is possible
to transform the problem of sampling from a constrained distribution 𝜋

to the simpler problem of sampling from an unconstrained distribution a.
Using the algorithms highlighted in this chapter, we can simulate a Markov
chain 𝝑 ∼ a and apply the mapping ∇𝜓∗(𝝑) to produce samples from the
desired posterior distribution 𝜋. In the case of the Langevin sampler, this is
achieved by modifying the original Langevin diffusion (3.1) to a mirrored
Langevin diffusion,

d𝝑 =
1
2
(∇ log a ◦ ∇𝜓) (𝜽)d𝑡 + d𝑊𝑡 (3.29)

𝜽 = ∇𝜓∗(𝝑). (3.30)

In practice, as noted earlier in this chapter, it is not possible to simulate ex-
actly from the mirror Langevin diffusion. Using the same Euler–Maruyama
discretisation scheme it is possible to create a practical discrete-time algo-
rithm. Stochastic gradient implementations of the mirror Langevin dynam-
ics are easily derived in the dual space and follow directly from the SGLD
algorithm.

One popular model that requires sampling from a constrained domain
is the latent Dirichlet allocation (LDA) model (Blei et al., 2003) which is
used for topic modelling. Here, the model parameters are constrained to
the probability simplex, i.e. \𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑑 and

∑𝑑
𝑖=1 \𝑖 = 1. Mir-

rored Langevin dynamics (3.29) can be used to simulate from the simplex

102 Stochastic Gradient MCMC Algorithms

distribution by mapping the parameters to R𝑑 and running the Langevin
dynamics algorithm on the unconstrained space. The entropic mirror map
(Beck and Teboulle, 2003) satisfies the required assumptions for a valid
map function under the mirrored Langevin dynamics,

𝜓(𝜽) =
𝑑∑︁
𝑖=1

\𝑖 log \𝑖 +
(
1 −

𝑑∑︁
𝑖=1

\𝑖

)
log

(
1 −

𝑑∑︁
𝑖=1

\𝑖

)
, (3.31)

where 0 log 0 := 0. The transformed log-posterior density is then given by

log a(𝝑) = log 𝜋(𝜽) ◦ ∇𝜓∗(𝝑) −
𝑑∑︁
𝑖=1

𝜗𝑖 + (𝑑 + 1)𝜓∗(𝝑), (3.32)

where 𝜓∗(𝝑) = log(1 + ∑𝑑
𝑖=1 exp(𝜗𝑖)) is the Fenchal dual of 𝜓(·) and is

strictly convex with Lipschitz gradients. Aside from transforming a con-
strained sampling problem into an unconstrained sampling problem, mirror
maps can also lead to simpler posterior distributions in the dual space. For
example, the Dirichlet posterior distribution introduced above, leads to a
posterior distribution on the dual space (3.32) which is strictly log-concave.

Instead of using mirror maps to sample from the posterior distribution of
the LDA model, we could instead use the stochastic gradient Riemannian
Langevin dynamics algorithm (see Section 3.4). Under the SGRLD algo-
rithm, the constrained parameters 𝜽 can be transformed to R𝑑 via several
alternative reparameterisations (see Patterson and Teh (2013) for a list).
However, this can induce asymptotic biases dominating the boundary re-
gions. An alternative approach is to recognise that the LDA posterior can
be expressed as a transformation of independent gamma random variables.
Therefore, rather than simulating from the simplex distribution via the
Langevin diffusion, one could instead utilise the Cox–Ingersoll–Ross (CIR)
process (Cox et al., 1985), which is invariant with respect to the gamma
distribution. This CIR-based approach (Baker et al., 2018) avoids bound-
ary biases. More broadly, leveraging alternative stochastic processes with
desired invariant distributions can enable specialised samplers for models
with complex structures.

3.6.2 Scalable Inference with Time Series Data
A key requirement for developing stochastic gradient algorithms is the
ability to generate unbiased estimates of∇ log 𝜋(𝜽) using data subsampling,
as in (3.6). This is straightforward when the log-posterior density, and
its gradient, are expressed as a sum of log 𝜋𝑖 (𝜽) and ∇ log 𝜋𝑖 (𝜽) terms,

3.6 Generalisations and Extensions 103

respectively, i.e. log 𝜋(𝜽) = ∑𝑁
𝑖=1 log 𝜋𝑖 (𝜽). Randomly subsampling these

terms provides an unbiased log-density and gradient estimate.
However, for models where data are not conditionally independent, for

example, network data, time series, or spatial data, the log-posterior density
cannot be expressed as a simple sum. Naively subsampling will yield biased
estimates of log 𝜋(𝜽) and ∇ log 𝜋(𝜽). Capturing both short- and long-range
dependencies in spatial data with subsampling remains an open challenge
for SGMCMC. For network data, Li et al. (2016) developed an SGMCMC
algorithm for the mixed-membership stochastic block model using block
structure and stratified subsampling to obtain unbiased gradient estimates.

Recent work in SGMCMC for temporally correlated data has focused on
hidden Markov models (Ma et al., 2017) with finite states, linear dynamical
systems (Aicher et al., 2019) and general nonlinear hidden Markov models
(Aicher et al., 2023). Under this modelling framework, the hidden Markov
model consists of two stochastic processes: i) a latent state process {X𝑡 }𝑇𝑡=0,
which is a Markov chain that evolves over time 𝑡 = 1, . . . , 𝑇 , with X𝑡 depend-
ing only on X𝑡−1 and 𝜽 , with transition density given by 𝑝(x𝑡 |x𝑡−1, 𝜽); and
ii) an observed process {Y𝑡 }𝑇𝑡=0 that is conditionally independent given the
latent states and 𝜽 , which are observed with probability density 𝑝(y𝑡 |x𝑡 , 𝜽).
Assuming model parameters 𝜽 , the full generative model (Figure 3.9) is

X𝑡 | (X𝑡−1 = x𝑡−1, 𝜽) ∼ 𝑝(x𝑡 |x𝑡−1, 𝜽) (3.33)
Y𝑡 | (X𝑡 = x𝑡 , 𝜽) ∼ 𝑝(y𝑡 |x𝑡 , 𝜽). (3.34)

The latent Markov chain X𝑡 captures the dynamics and temporal depen-
dence, while the observations Y𝑡 depend only on the current state of the
latent process. Hidden Markov models are useful for modelling complex
time series data by augmenting the observables with latent states. It is of-
ten common to distinguish between hidden Markov models and state-space
models, where in the case of the former the latent process X𝑡 is discrete and
is continuous in the case of the latter. However, for the sake of convenience,
we shall use the term hidden Markov model to cover both model types.

Using SGMCMC methods, it is possible to estimate the model parameters
𝜽 for general hidden Markov models which exhibit temporal dependency
in the observations. As before, the goal is to sample from the posterior
distribution 𝜋(𝜽) := 𝑝(𝜽 |y) where y = {y1, . . . , y𝑇 } is the observed data
sequence, which is proportional to the product of the likelihood 𝑝(y|𝜽)
and the prior 𝜋0(𝜽). The likelihood 𝑝(y|𝜽) typically cannot be evaluated
exactly, as it requires summing (discrete setting) or integrating (continuous
setting) over the latent states X. Focusing on the continuous variable setting,

104 Stochastic Gradient MCMC Algorithms

X0 X𝑡−2 X𝑡−1 X𝑡 X𝑡+1 X𝑡+2 X𝑇

y0 y𝑡−2 y𝑡−1 y𝑡 y𝑡+1
S

y𝑡+2
S∗

y𝑇

Figure 3.9 Graphical representation of the hidden Markov model
with latent variables X𝑖 and observations y𝑖 . The subsequence is
captured in the solid box S and the buffer region is highlighted by
the dotted box S∗.

the latent states can be integrated out numerically using particle filtering
techniques (Doucet et al., 2009). Using a particle approximation of Fisher’s
identity (Nemeth et al., 2016),

∇𝜽 log 𝜋(𝜽) = ∇𝜽 log 𝑝(y1:𝑇 |𝜽) = EX |Y,𝜽 [∇𝜽 log 𝑝(X1:𝑇 , y1:𝑇 |𝜽)] (3.35)

=

𝑇∑︁
𝑡=1

EX |Y,𝜽 [∇𝜽 log 𝑝(X𝑡 , y𝑡 |x𝑡−1, 𝜽)]

it is possible to unbiasedly approximate ∇𝜽 log 𝜋(𝜽) by replacing the pos-
terior distribution of the latent states 𝑝(x1:𝑇 |y1:𝑇 , 𝜽) with a numerical ap-
proximation represented by a set of 𝑃 particles {X(𝑝)1:𝑇 }𝑃𝑝=1.

Calculating Fisher’s identity can be computationally expensive for large
𝑇 and so an SGMCMC approximation to Fisher’s identity can be used to re-
place the full data gradient (3.35) with a stochastic approximation estimated
from a random subset of the data. This allows each gradient evaluation to
be cheaper, enabling more MCMC iterations and better convergence for
large 𝑇 . However, naively subsampling the data randomly (3.6) induces
bias since it breaks temporal dependencies. To address this issue, Aicher
et al. (2019, 2023) propose to subsample contiguous subsequences. Figure
3.9 provides a graphical representation of the hidden Markov model which
also highlights the subsampled data as a contiguous subsequence S of size
𝑚. The stochastic gradient following Fisher’s identity (3.35) is then

∇(𝑚)𝜽 log 𝑝(y1:𝑇 |𝜽) =
∑︁
𝑡 ∈S

Pr(𝑡 ∈ S)−1 · EX |yS∗ ,𝜽 [∇𝜽 log 𝑝(X𝑡 , y𝑡 |x𝑡−1, 𝜽)] .

(3.36)
However, the stochastic gradient estimator (3.36) is biased because the
expectation is taken over the latent state which is dependent only on yS

3.7 Chapter Notes 105

and not y1:𝑇 . This bias can be reduced by extending the subsequence S
to include a buffered region S∗. The expectation in (3.35) is then taken
over the wider buffered range 𝑝(x𝑡 |yS∗ , 𝜽) rather than 𝑝(x𝑡 |yS , 𝜽). Results
from Aicher et al. (2019) show that under Lipschitz assumptions on the
model (3.33), and its gradients, the error in the stochastic gradients decays
geometrically with the buffer size |S∗ |.

3.7 Chapter Notes
Markov chain Monte Carlo algorithms have been the cornerstone of Bayesian
inference since the 1990s. However, as the size of datasets has grown, the
requirement that each MCMC update uses all of the data to approximate
the posterior distribution has created a computational challenge. There has
been significant recent interest in the Statistics and Machine Learning com-
munities to create new Monte Carlo-based algorithms for scalable Bayesian
inference in the presence of large datasets (Bardenet et al., 2014). Broadly
speaking, scalable MCMC algorithms tend to fall into two categories which
either (i) subsample the data (Welling and Teh, 2011; Chen et al., 2014;
Nemeth and Fearnhead, 2021), as covered in this chapter, or (ii) use parallel
computing to distribute the computational cost across multiple CPUs (Scott
et al., 2016; Nemeth and Sherlock, 2018; Vyner et al., 2023).

In the context of data subsampling, the per iteration cost of the Monte
Carlo algorithm is reduced. However, this reduction in computational cost is
only beneficial if the subsampling scheme leads to posterior approximations
with high statistical accuracy. Chatterji et al. (2018) gives results on the
number of iterations, and resulting computational cost, required for different
stochastic gradient algorithms to produce samples from a distribution which
is within a specified “distance" of 𝜋. Other works (Bierkens et al., 2019b;
Huggins and Zou, 2017; Pollock et al., 2020) have studied the computational
and statistical trade-offs that result from approximate and scalable MCMC
schemes, which are often referred to as exact-approximate algorithms. It is
often the case with scalable MCMC algorithms that there is no free lunch
and simple naive subsampling alone does not lead to statistically efficient
algorithms, see for example Johndrow et al. (2020). In the case of control-
variates for subsampling, a number of theoretical results (e.g. Nagapetyan
et al., 2017; Baker et al., 2019; Brosse et al., 2018) show that if we ignore
the pre-processing cost of finding �̂� , the computational cost per-effective
sample of SGLD with control variates is 𝑂 (1), rather than the 𝑂 (𝑁) cost
for SGLD with the simple gradient estimator (3.6).

4

Non-Reversible MCMC

A reversible Markov chain is any Markov chain that satisfies detailed bal-
ance; see Section 1.3. Remember, this condition states that, at stationarity,
the probability of the chain starting in a set B and moving to set C is equal
to the probability of it starting in the set C and moving toB. This means that
the dynamics of the process are the same backwards in time as forwards in
time. One consequence of reversibility is that the Markov chain can exhibit
random-walk behaviour, where it can return to states or regions of the state
space where it has recently been.

A non-reversible Markov chain is any Markov chain that does not satisfy
detailed balance. As we will see, the potential benefit of non-reversibility
is that the Markov chain can more quickly explore the state space as it can
suppress the random walk behaviour. However, designing non-reversible
Markov chains with the required stationary distribution, or even determining
the stationary distribution of a non-reversible Markov chain, is much more
challenging than for a reversible chain. This chapter will describe one
approach to designing non-reversible MCMC samplers based on the idea of
lifting – which involves taking a reversible MCMC scheme and then lifting
it to a higher-dimensional state-space to enable the use of non-reversible
moves. These ideas naturally motivate the non-reversible continuous-time
MCMC samplers of Chapter 5.

4.1 The Benefits of Non-Reversibility
To see the benefits of non-reversible Markov chains, we will consider the
following simple example.

Example 4.1 Let 𝑋0 = 0 and

𝑋𝑘 = (𝑋𝑘−1 + 𝐽𝑘) (mod 𝑆),

so that 𝑋𝑘 follows a random walk on {0, . . . , 𝑆−1}. Here 𝐽𝑘 is the jump size,

106

4.1 The Benefits of Non-Reversibility 107

which can have any distribution on {−ℎ, . . . , ℎ} that is symmetric about 0,
and (mod 𝑆) means we take the remainder after dividing by 𝑆. We include
(mod 𝑆), so a random walk that moves to negative values, or values equal
to or above 𝑆, gets mapped back to {0, . . . , 𝑆 − 1}, with 𝑆 mapping to 0
and −1 to 𝑆 − 1 and so on. For simplicity, we consider 𝐽𝑘 to have a uniform
distribution on {−ℎ,−ℎ + 1, . . . , ℎ}. It is straightforward to show that the
resulting Markov chain is reversible and has the uniform distribution on
{0, . . . , 𝑆 − 1} as its stationary distribution.

First, consider ℎ = 1 and look at the behaviour of the chain as we increase
𝑆. In the top row of Figure 4.1, we show trace plots of the chain for 𝑆 = 100,
𝑆 = 200 and 𝑆 = 400. In each case, we show the path of the chain over
40𝑆 iterations. What we observe is that as 𝑆 increases the chain becomes
much slower at exploring the state-space. We can see this more clearly if we
look at the empirical marginal distribution of the chain after 𝑛 time steps.
Let 𝑏 be a chosen burn-in period, then for 𝑛 > 𝑏 the empirical marginal
distribution, which is our natural estimator of the stationary distribution of
the chain, is

�̂�𝑛 (𝑖) =
1

𝑛 − 𝑏

𝑛∑︁
𝑘=𝑏+1

I {𝑋𝑘 = 𝑖} . (4.1)

This is just the proportion of time, after burn-in, that the chain was in state
𝑖. We can then compare this estimate with the true stationary distribution,
by calculating the total variation distance between the two. This is just∑𝑆−1
𝑖=0 |�̂�𝑛 (𝑖) − 1/𝑆 |, and is shown in the top-row of Figure 4.2, where we

show the total variation distance against 𝑛/𝑆 and against 𝑛/𝑆2 for 𝑆 = 100,
𝑆 = 200 and 𝑆 = 400. We see evidence that, as we increase 𝑆, the time we
need to run our Markov chain must increase proportionally with 𝑆2 to have
the same degree of accuracy.

It is interesting to compare this with the performance of the following
non-reversible Markov chain, which we construct by making the random
walk biased; i.e., choosing a jump distribution 𝐽𝑘 whose expectation is
non-zero.

Example 4.2 In Example 4.1, keep 𝐽𝑘 taking values in {−1, 0, 1}, but set
the jump probabilities to be {2/9, 1/3, 4/9} respectively so that a positive
jump is twice as likely as a negative one.

We show the resulting trace plots of the Markov chain in the bottom row
of Figure 4.1. Qualitatively the trace plots look very different to those in the
top row, as the paths tend to move upwards at each iteration. This is linked

108 Non-Reversible MCMC

Figure 4.1 Trace plots of two MCMC algorithms for sampling
from a uniform distribution on {0, . . . , 𝑆 − 1} for different values
of 𝑆. A random walk of step size uniform on {−1, 0, 1} (Example
4.1, top), and a non-reversible (biased) random walk which is
twice as likely to have a step of 1 than a step of -1 (Example 4.2,
bottom). Columns are for 𝑆 = 100 (left), 𝑆 = 200 (middle) and
𝑆 = 400 (right). We show the state of the MCMC algorithm for
40𝑆 iterations (top row) or 4𝑆 iterations (bottom row). For this
scaling of iterations, we see the reversible MCMC algorithm
mixes more slowly as 𝑆 increases, whereas qualitatively the
mixing of the non-reversible algorithm remains similar.

to the non-reversibility of the chain, as a realisation of the chain forward
in time will now look very different from a realisation backwards in time.
Furthermore, the realisations for different 𝑆 look similar. That is, once we
scale the number of iterations by 𝑆, chains with different 𝑆 mix similarly.
This is shown quantitatively in the bottom left plot of Figure 4.2, where
we plot the total variation distance of the empirical marginal distribution
of our chain (4.1) from the uniform distribution, against 𝑛/𝑆: this is almost
identical for the three values of 𝑆.

Why does the non-reversible chain have better mixing properties? In-
tuitively, the poor performance of the reversible chain is because it has
random-walk behaviour: it will often move up on one iteration and then
move down on the next. The non-reversible chain suppresses this random-

4.2 Hamiltonian Monte Carlo Revisited 109

walk behaviour as its bias means it will tend to move in the same direc-
tion. The qualitative difference between these reversible and non-reversible
chains that we have demonstrated empirically, can be shown theoretically
(Diaconis et al., 2000).

For a simple heuristic of this behaviour, consider 𝑋0 = ⌊𝑆/2⌋ and 𝑛 ≤
⌊𝑆/2⌋. For the symmetric random walk,E [𝑋𝑛 − 𝑋0] = 0 and, since the total
movement by iteration 𝑛 is a sum of 𝑛 independent moves, Var [𝑋𝑛 − 𝑋0] ∝
𝑛, so the typical amount of movement in the first 𝑛 iterations is proportional
to
√
𝑛. However, for the biased random walk, E [𝑋𝑛 − 𝑋0] ∝ 𝑛 and so the

amount of movement is roughly proportional to 𝑛.
Importantly, when we measured the performance of the non-reversible

Markov chain we looked at the accuracy of (4.1), which is the proportion
of time it spends in each state averaged over time. If, instead, we look at the
convergence of P (𝑋𝑛 = 𝑖) to 1/𝑆, we would obtain a very different result
to that shown in Figure 4.2, as the bias of the random walk in Example 4.2
means that the centre of the distribution of 𝑋𝑛 changes with 𝑛: the benefit of
the non-reversible chain is only realised as we take the ergodic average over
different time-points. This is most easily seen for the extreme case where
𝐽𝑘 = 1 with probability 1. In that case, we find that the distribution of 𝑋𝑛
is a point mass at a single value for each 𝑛, but by averaging over time we
still have that (4.1) converges to the uniform distribution at a rate of 1/𝑛.

Finally, as an aside, we observe that the poor performance of the reversible
chain is also linked to the fact that the size of the moves at each iteration
is small – this can be quantified in terms of the variance of 𝑋𝑘 − 𝑋𝑘−1
relative to the variance of the stationary distribution. And it is the fact that
this ratio increased as we increased 𝑆 that meant that the reversible chain
performed relatively poorly for larger 𝑆. To see this we can implement the
reversible random walk, but set the maximum step size ℎ = 𝑆/100 so it is
proportional to 𝑆. The total variation distance between (4.1) and the uniform
distribution for such a chain is shown in the bottom right plot of Figure 4.2,
and demonstrates better scaling with 𝑆: in fact, like the non-reversible chain,
as 𝑆 increases we now obtain the same accuracy providing we scale 𝑛 to be
proportional to 𝑆.

4.2 Hamiltonian Monte Carlo Revisited
The Hamiltonian Monte Carlo, or HMC, algorithm of Section 2.2 is often
viewed as a non-reversible MCMC algorithm. However, strictly it is a
reversible algorithm.

Remember that the HMC algorithm for sampling from a density 𝜋(𝜽),

110 Non-Reversible MCMC

0 20 40 60 80
Iterations/S

0.0

0.5

1.0

1.5

2.0
TV

D

S= 400

S= 200

S= 100

0.0 0.5 1.0 1.5
Iterations/S 2

0.0

0.5

1.0

1.5

2.0

TV
D

S= 400

S= 200

S= 100

0 20 40 60 80
Iterations/S

0.0

0.5

1.0

1.5

2.0

TV
D

S= 400

S= 200

S= 100

0 20 40 60 80
Iterations/S

0.0

0.5

1.0

1.5

2.0
TV

D

S= 400

S= 200

S= 100

Figure 4.2 Empirical total variation distance (TVD) between
(4.1) and the uniform distribution against the number of iterations
and different values of 𝑆: 𝑆 = 100 (blue), 𝑆 = 200 (red) and
𝑆 = 400 (black). TVD for the random walk of Example 4.1 with
step size 1 (top row) with 𝑥-axis scaled by 𝑆 (top left) or 𝑆2 (top
right). TVD for the non-reversible Example 4.2 (bottom left), and
for the Example 4.1 with step size scaled by 𝑆 (bottom right); in
both case the 𝑥-axis is scaled by 𝑆. All results are averaged over
10 realisations of the chains.

involves augmenting the state of our MCMC algorithm with a momentum
variable of the same dimension as 𝜽 . Denote the momentum variable by p,
and the state of our Markov chain by (𝜽 , p). In the following, for simplicity,
we will assume that the mass matrix is the identity. We introduce a target

4.2 Hamiltonian Monte Carlo Revisited 111

density for (𝜽 , p),

�̃�(𝜽 , p) ∝ 𝜋(𝜽) exp
{
−1

2
p⊤p

}
,

which has independent components, with 𝜽 from 𝜋 and p having a standard
Gaussian distribution. An HMC algorithm which has �̃�(𝜽 , p) as its station-
ary density interleaves the following three moves at each iteration. Given
current state (𝜽 𝑘 , p𝑘)

(1) Simulate a new momentum p from a standard Gaussian distribution.
(2)(i) Obtain the proposed state (𝜽 ′, p′) by running the leapfrog dynamics,

for some number, 𝐿, of steps with some step length, 𝜖 , starting from
(𝜽 𝑘 , p), and flip the final momentum.

(ii) Accept the proposed state, (𝜽 𝑘+1, p′′) = (𝜽 ′, p′) with probability

min
(
1,
𝜋(𝜽 ′, p′)
𝜋(𝜽 𝑘 , p)

)
,

otherwise (𝜽 𝑘+1, p′′) = (𝜽 𝑘 , p).
(3) Flip the momentum, (𝜽 𝑘+1, p𝑘+1) = (𝜽 𝑘 ,−p′′).

In the notation of Section 2.2, the proposal in step (2i) is denoted by
Leap𝐿− (𝜽 𝑘 , p). Move (2) involves simulating non-reversible Hamiltonian
dynamics to produce a potentially large proposed move, but the move itself
is reversible. As, trivially, are moves (1) and (3). The move (3) has no
net effect on the algorithm since the momentum is discarded at the next
iteration, and it is not included in the description in Section 2.2. It does,
however, ensure that, if the proposal is accepted, the final momentum is the
same as that which was obtained through the leapfrog approximation to the
Hamiltonian dynamics rather than its opposite. This will be helpful in the
next section.

Interleaving three different reversible moves does not necessarily result
in a reversible Markov chain (see the next section, for example). But in
this case, it is straightforward to show that the marginal process for 𝜽
is a reversible Markov chain. The benefit of HMC is in the use of the
non-reversible deterministic leap-frog dynamics to produce large proposed
moves that have a high chance of being accepted. As we saw in the previous
section, the issues with reversible MCMC algorithms occur when the step
size is small – and HMC gets around this by being able to propose large
moves rather than being non-reversible. This fact is seen in the scaling
results for HMC as the dimension of the state-space increases (see Section
2.2 and the literature in Section 2.3).

112 Non-Reversible MCMC

4.3 Lifting Schemes for MCMC
Whilst HMC is a reversible algorithm when viewed as a Markov chain
on 𝜽 , some of the ideas behind the Hamiltonian dynamics are common to
non-reversible MCMC algorithms. Furthermore, it is possible to adapt the
HMC algorithm so that it is non-reversible.

Most non-reversible MCMC algorithms involve the idea of “lifting”, that
is, defining the Markov chain on a higher-dimensional state space than you
wish to sample from. Moreover, they tend to do this in a way similar to
HMC, in that if you wish to sample from some target distribution, 𝜋(𝜽),
you work with a Markov chain with state (𝜽 , p), where p is of the same
dimension, 𝑑, as 𝜽 and can be interpreted as the momentum or velocity
that is describing the direction and speed with which the Markov chain is
currently moving through 𝜽 space. The non-reversibility of the algorithm is
based on trying to encourage Markov chain moves that continue in roughly
the same direction over successive iterations.

4.3.1 Non-Reversible HMC
One of the first truly non-reversible algorithms is an extension of HMC due
to Horowitz (1991). The idea is to adapt how the momentum is refreshed at
each iteration so that the momentum at the current iteration will be similar
to that at the previous iteration. This can be achieved by replacing step (1)
of the HMC algorithm with the update

p′ = 𝛾p + (1 − 𝛾2)1/2𝜻 ,

where 𝜻 is a realisation of a 𝑑-dimensional standard Gaussian random
variable, and 0 < 𝛾 < 1. If p has a standard Gaussian distribution, then
so does p′: it is Gaussian as it is a linear combination of two independent
Gaussian random variables, the expectation of the right-hand side is 0, and
the variance is 𝛾2I𝑑 + (1− 𝛾2)I𝑑 = I𝑑 . If 𝛾 is close to 1 then p′ will be close
to p. The overall algorithm is given in Algorithm 4.

This algorithm has the required stationary distribution, as each step
satisfies detailed balance with respect to the extended posterior, �̃�. However,
whilst each step of the algorithm is a reversible Markov chain move, by
interleaving the moves we obtain a non-reversible algorithm.

Whilst this algorithm generalises HMC, in practice it is rarely noticeably
more efficient (see for example Neal, 2011). The reason is the momentum
flip that occurs if we reject our proposal, as, if 𝛾 is large this sends the chain
back in the direction from whence it came. Thus we need to either choose the

4.3 Lifting Schemes for MCMC 113

Algorithm 4: Non-reversible HMC of Horowitz (1991)
Input: Density 𝜋(𝜽), initial value 𝜽0 and momentum p0 sampled

from N(0, I𝑑), and refresh rate 𝛾 ∈ [0, 1).
for 𝑘 ∈ 0, . . . , 𝑛 − 1 do

Simulate 𝜻 ∼ N(0, I𝑑) and set p′ = 𝛾p𝑘 + (1 − 𝛾2)1/2𝜻 .
(𝜽 ′, p′′) ← Leap𝐿− (𝜽 𝑘 , p′).
Calculate the acceptance probability:

𝛼(𝜽 𝑘 , p′; 𝜽 ′, p′′) := min
(
1,
�̃�(𝜽 ′, p′′)
�̃�(𝜽 𝑘 , p′)

)
.

With a probability of 𝛼(𝜽 𝑘 , p′; 𝜽 ′, p′′) accept the proposal,
(𝜽 𝑘+1, p′′′) ← (𝜽 ′, p′′); otherwise reject it,
(𝜽 𝑘+1, p′′′) ← (𝜽 𝑘 , p𝑘).

Flip the velocity: (𝜽 𝑘+1, p𝑘+1) ← (𝜽 𝑘+1,−p′′′).
end

leapfrog step size, 𝜖 , to be small enough that the probability of acceptance
after 𝐿 steps is usually very close to 1, or we need to choose 𝛾 to be small
so that the new momentum is relatively unrelated to the old momentum.
The first comes at a high computational cost while the second leads to
an algorithm that is very similar to standard HMC (which corresponds to
𝛾 = 0). Later, in Section 4.4, we will present some alternative ideas that
can alleviate the problems of momentum flips in algorithms such as this.

4.3.2 Gustafson’s Algorithm and Multidimensional Generalisations
It is possible to use similar ideas to obtain non-reversible versions of a
random walk Metropolis–Hastings algorithm, known as guided random
walks. This was first proposed by Gustafson (1998) for component-wise
updates, though it has a natural extension to multivariate updates which
we will also describe. First, consider the univariate case and a Gaussian
random walk proposal with a variance of 𝛿2 and Z ∼ N(0, 𝛿2). Given a
current value, \, we can write this proposal as

\ ′ = \ + 𝑝 |Z |,

where 𝑝 is uniformly sampled from {−1, 1}. We can think of 𝑝 as the
direction of the move and |Z | as the size of the move. The idea of Gustafson
(1998) is to augment the state of the chain with 𝑝 and to simulate a chain

114 Non-Reversible MCMC

such that the direction of the move is likely to be the same over successive
time steps. This can be achieved by iterating the following two steps

(1) Simulate Z , a realisation of a Gaussian random variable, and set (\ ′, 𝑝′) =
(\𝑘 + 𝑝𝑘 |Z |,−𝑝𝑘) with probability

min
{
1,
𝜋(\ ′)
𝜋(\𝑘)

}
otherwise set (\ ′, 𝑝′) = (\𝑘 , 𝑝𝑘).

(2) Flip the direction, so (\𝑘+1, 𝑝𝑘+1) = (\ ′,−𝑝′).

The stationary distribution of this algorithm has independent distributions
for \ and 𝑝, with \ from the distribution whose density is proportional to
𝜋(\), and 𝑝 having a uniform distribution on {−1, 1}. This follows as both
steps (1) and (2) are reversible moves that keep such a distribution invariant.

To see the behaviour of this algorithm, and compare it to a standard
random walk Metropolis–Hastings algorithm, we show results of both
algorithms when sampling from a Gaussian target distribution in Figures
4.3 and 4.4. For Figure 4.3, we implement both algorithms using a small
proposal variance, 𝛿2. Here we see the poor mixing of the random walk
Metropolis due to its reversibility and the random walk behaviour of its
output. This means that it takes nearly 1000 steps to reach the mode of the
target distribution. By comparison, Gustafson’s algorithm suppresses this
random walk behaviour, with large periods of time spent moving in the
same direction. As we are sampling from a uni-modal target, the qualitative
dynamics of the algorithm are as follows: when it is moving towards the
mode the acceptance probability is 1 and the algorithm keeps moving in
that direction. It is only when it is moving away from the mode that it has
any chance of rejecting a proposal and switching the direction of its move.

The behaviour of the two algorithms when we use a larger step size, as
shown in Figure 4.4, is very different. In this case, both trace plots look
qualitatively similar, and both samplers have similarly good performance as
shown by the auto-correlation plots. The reason is that for a large step size,
the chances of rejecting the proposal and switching the direction are now
much higher, closer to 0.5 on average. This also ties in with the observation
from Section 4.1 that reversibility is only an issue when the step sizes are
small.

If we wish to sample from a multivariate target 𝜋(𝜽), we can do so
by applying this update component-wise. That is, we augment the state to
(𝜽 , p) where p is 𝑑-dimensional and each entry of p is either 1 or −1 and
specifies the direction of the next update of the corresponding component

4.3 Lifting Schemes for MCMC 115

0 500 1000
k

3

2

1

0

1

2

3
θ k

RWMH

0 500 1000
k

3

2

1

0

1

2

3

θ k

Gustafson

0 20 40
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
C

F

0 20 40
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
C

F

Figure 4.3 Comparison of random walk Metropolis–Hastings
(left column) and the guided random walk (right column) when
sampling from a 1-d Gaussian. The proposal is Gaussian with a
standard deviation of 0.1 in both cases. Top row shows trace plots,
and bottom row shows the estimated auto-correlation of the
chains.

of 𝜽 . Then we have 𝑑 parts to each iteration of the algorithm where each
part uses the above algorithm to update a different component of 𝜽 .

One can see the similarity with the algorithm of Horowitz (1991). We
have augmented the state to include a component, of the same dimension as
𝜽 , that governs the direction of the update of the Markov chain. Our Markov
chain update is based on interleaving two reversible moves, but with the
resulting Markov chain being non-reversible. Finally, each reversible move
involves a flip of direction; providing the acceptance probability in step (1)

116 Non-Reversible MCMC

0 50 100
k

3

2

1

0

1

2
θ k

RWMH

0 50 100
k

3

2

1

0

1

2

θ k

Gustafson

0 10 20 30
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
C

F

0 10 20 30
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
C

F

Figure 4.4 Comparison of random walk Metropolis–Hastings
(left column) and the guided random walk algorithm (right
column) when sampling from a 1-d Gaussian. The proposal is
Gaussian with a standard deviation of 2.38 in both cases. Top row
shows trace plots, and bottom row shows the estimated
auto-correlation of the chains.

is high, then these cancel out and the chain is likely to move in the same
direction over multiple time-steps.

Finally, one can implement the idea of Gustafson (1998) in a way that
jointly updates the 𝑑-dimensional state. This can be achieved by letting p
be a 𝑑-dimensional unit vector. Define a target distribution on (𝜽 , p) that
is the product of 𝜋(𝜽) and the uniform density for p on the 𝑑-dimensional
sphere; we denote the density by U𝑑 (p) and the surface of the sphere as
S𝑑 . This target will be kept invariant by the following algorithm, where to

4.3 Lifting Schemes for MCMC 117

aid the presentation of the algorithm in Section 4.4 we replace the random
|Z | with a fixed, user-prescribed 𝛿 > 0. Here and for the remainder of this
chapter the proposal is a deterministic, 1-1 map, rather than a density, and
we use the symbol q rather than 𝑞.

Algorithm 5: Multi-dimensional guided random walk, with fixed
direction.
Input: Density 𝜋(𝜽), initial value 𝜽0 and speed 𝛿 > 0, unit vector

p0 sampled from U𝑑 .
for 𝑘 ∈ 0, . . . , 𝑛 − 1 do

Propose (𝜽 ′, p′) = q1(𝜽 𝑘 , p𝑘) = (𝜽 𝑘 + 𝛿p𝑘 ,−p𝑘).
With probability

𝛼1(𝜽 𝑘 , p𝑘; 𝜽 ′, p′) := min
{
1,
𝜋(𝜽 ′)
𝜋(𝜽 𝑘)

}
accept the proposal, (𝜽 𝑘+1, p′′) ← (𝜽 ′, p′); otherwise reject it,
(𝜽 𝑘+1, p′′) ← (𝜽 𝑘 , p𝑘).

Flip the velocity: (𝜽 𝑘+1, p𝑘+1) = (𝜽 𝑘+1,−p′′).
end

The velocity flip does not update 𝜽 , and p ∈ S𝑑 ⇔ −p ∈ S𝑑 , so the
flip is reversible with respect to 𝜋(𝜽)U𝑑 (p), which must, therefore, be
the stationary density. It is helpful to explore exactly why the first step
is also reversible with respect to this density. Suppose that (𝜽 , p) has a
density of 𝜋(𝜽)U𝑑 (p) and let B and C be disjoint sets in R𝑑 × S𝑑 . Then
P ((𝜽 , p) ∈ B, (𝜽 ′, p′) ∈ C) is∫

𝜋(𝜽)U𝑑 (p)min
(
1,
𝜋(𝜽 ′)
𝜋(𝜽)

)
1B (𝜽 , p)1C (𝜽 ′, p′) d𝜽dp

=

∫
𝜋(𝜽 ′)U𝑑 (p′)min

(
1,
𝜋(𝜽)
𝜋(𝜽 ′)

)
1B (𝜽 , p)1C (𝜽 ′, p′) d𝜽dp

=

∫
𝜋(𝜽 ′)U𝑑 (p′)min

(
1,
𝜋(𝜽)
𝜋(𝜽 ′)

)
1B (𝜽 , p)1C (𝜽 ′, p′) d𝜽 ′dp′,

as required. Here, the second line follows by rearrangement and because
the algorithm forces p ∈ S𝑑 ⇔ p′ ∈ S𝑑 . The third line follows from the
unit Jacobian of the transformation q1.

While this algorithm keeps the target on (𝜽 , p) invariant, the algorithm
is reducible; p can only take two values: p0 and −p0, whilst 𝜽 is confined
to a discrete grid on the vector 𝜽0 + 𝛿p0. It is straightforward to make the

118 Non-Reversible MCMC

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 4.5 Trace plot for 50000 iterations of the algorithm of
Gustafson (1998) sampling from a 2-𝑑 density concentrated on
the unit circle. The heat map shows the target density (red is the
region of high density), and the black line shows the trace of the
algorithm.

algorithm irreducible in dimension 2 and above by adding occasional moves
that update p, for example, that sample a new value of p from U𝑑 .

Comparison on a Ring-shaped Target
To see the benefits of these non-reversible algorithms, we compared the
guided random walk algorithm with that of a standard random walk Metropo-
lis algorithm for sampling from a density that concentrates on the perimeter
of a circle in 2-𝑑. This mimics a common challenge of sampling from
a density that concentrates near a lower-dimensional manifold within a
higher-dimensional space. We implemented Algorithm 5 with a refresh of
the direction every 10 iterations.

Trace plots for the non-reversible and reversible algorithms are shown
in Figures 4.5 and 4.6, respectively. Each algorithm uses the same average
step size. For good mixing in the manifold scenario, the step size needs
to be of the order of the width of the density orthogonal to the circle –
and thus is small relative to the size of the circle itself. As we have seen

4.4 Improving Non-reversibility: Delayed Rejection 119

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 4.6 Trace plot for 50000 iterations of the random-walk
Metropolis algorithm sampling from a 2-𝑑 density concentrated
on the unit circle. The heat map shows the target density (red is
the region of high density), and the black line is the trace of the
algorithm.

previously, using such a small step size leads to random-walk behaviour
for the reversible algorithm. By comparison, the non-reversible algorithm
is able to suppress this. The overall effect is much better mixing for the
non-reversible algorithm, which takes 50000 iterations to explore the full
extent of the ring. By comparison, over the same number of iterations, the
reversible algorithm has only explored the bottom half of the ring; in fact,
it takes six times this number of iterations to explore the entire ring.

4.4 Improving Non-reversibility: Delayed Rejection
The major source of inefficiency in Algorithm 5 is the net reversal of
momentum whenever the proposed new position and momentum (𝜽 ′, p′)
are rejected. The subsequent momentum flip is designed to keep the process
moving in the same direction as it was at the start of the iteration; however,
it has the opposite effect when there is a rejection, causing the chain to
retrace its steps. The delayed-rejection method of Green and Mira (2001)

120 Non-Reversible MCMC

can be applied to any reversible step and provides a natural mechanism for
reducing the probability of rejection as follows: whenever the original step
would have rejected the proposal, a new value is proposed; the acceptance
probability for this new proposal is designed exactly so that the combination
of the rejected existing step and the potential new step satisfies detailed
balance with respect to the intended posterior.

The validity of the propose-accept/reject step of Algorithm 5 relies
on the Jacobian of q1 being 1 and the fact that q1(𝜽 ′, p′) ≡ q1(𝜽 𝑘 +
𝛿p𝑘 ,−p𝑘) = (𝜽 𝑘 , p𝑘). Following analogous constraints, we incorporate a
delayed-rejection move as follows: If (𝜽 ′, p′) is rejected, we can make a new
proposal based not only on the current state, (𝜽 𝑘 , p𝑘) but also on the initial,
rejected proposal, (𝜽 ′, p′). In this case, we now consider the current state to
be the original current state and the initial, rejected proposal: (𝜽 𝑘 , p𝑘 , 𝜽 ′, p′);
we call this the full state. We then make a proposal for this full state;
i.e., we propose a new original state and a new initial, rejected proposal:
(𝜽 ′′, p′′, 𝜽 ′′′, p′′′) = q2(𝜽 𝑘 , p𝑘 , 𝜽 ′, p′), where (𝜽 ′′′, p′′′) = (𝜽 ′′ + 𝛿p′′,−p′′).
To simplify the notation in the following, we define

z𝑘 = (𝜽 𝑘 , p𝑘), z′ = (𝜽 ′, p′), z′′ = (𝜽 ′′, p′′) and z′′′ = (𝜽 ′′′, p′′′).

We will either accept or reject the proposal (z′′, z′′′) = q2(z𝑘 , z′) for the full
state and we choose the probability of acceptance exactly so that the move
satisfies detailed balance with respect to the density of the current state
(which implies the initial proposal), including the fact that it was rejected:

˜̃𝜋(z𝑘 , z′) := 𝜋(𝜽 𝑘)U𝑑 (p𝑘)I [z′ = q1(z𝑘)] {1 − 𝛼1(z𝑘; z′)} .

By analogy with the Metropolis–Hastings algorithm we might expect this
acceptance probability to be

𝛼2(z𝑘 , z′; z′′, z′′′) := min
[
1,
{1 − 𝛼1(z′′; z′′′)}𝜋(𝜽 ′′)
{1 − 𝛼1(z𝑘; z′)}𝜋(𝜽 𝑘)

]
,

where for simplicity of presentation we have not included the indicator func-
tions I [z′′′ = q1(z′′)] and I [z′ = q1(z𝑘)] in the numerator and denominator
of the fraction, respectively, since by design these are both 1. Indeed, subject
to conditions on q2, 𝛼2 is correct. For the proposal and accept/reject step to
be valid, q2 must have a Jacobian of 1, and must satisfy q2(z′′, z′′′) = (z𝑘 , z′).
The probability of being at z𝑘 with a deterministic proposal of z′ that has
been rejected, and then moving to this new full state is, therefore,

˜̃𝜋(z𝑘 , z′)𝛼2(z𝑘z′; z′′, z′′′),

4.4 Improving Non-reversibility: Delayed Rejection 121

which, by design, is equal to

˜̃𝜋(z′′, z′′′)𝛼2(z′′, z′′′; z𝑘 , z′).

Using the two constraints on q2 and an analogous argument to that used for
Algorithm 5, detailed balance is, therefore, satisfied.

4.4.1 The Discrete Bouncy Particle Sampler
The current state is z𝑘 , given this, z′ is fixed via q1. The 1-1 map q1 simi-
larly fixes the relationship between z′′ and z′′′ so the additional flexibility
this delayed-rejection formulation allows is the freedom to choose z′′ or,
equivalently, z′′′.

To make 𝛼2 close to 1, a sensible aim is to choose (z′′, z′′′) such that
𝜋(𝜽 ′′) ≈ 𝜋(𝜽 𝑘) and 𝛼1(z′′; z′′′) ≈ 𝛼1(z𝑘; z′). If we set 𝜽 ′′′ = 𝜽 ′, both of
these conditions will be satisfied if 𝜋(𝜽 ′)/𝜋(𝜽) ≈ 𝜋(𝜽 ′)/𝜋(𝜽 ′′); i.e.

log 𝜋(𝜽 ′) − log 𝜋(𝜽 ′′) ≈ log 𝜋(𝜽 ′) − log 𝜋(𝜽 𝑘).

Taylor expanding about 𝜽 ′, we require 𝛿g·p ≈ 𝛿g·p′′, where g = ∇ log 𝜋(𝜽 ′);
i.e. both p′′ and p should have approximately the same component in the
gradient direction. Perhaps the most natural way to achieve this is by setting

p′′ = Ψg(p) := −p𝑘 + 2(p𝑘 · ĝ) ĝ,

where ĝ = g/∥g∥, is the direction of the gradient of log 𝜋 at 𝜽 ′. In this case,

Ψg(p′′) = p𝑘 − 2(p𝑘 · ĝ) ĝ + 2[
{
−p𝑘 + 2(p𝑘 · ĝ) ĝ

}
· ĝ] ĝ = p𝑘 .

Further, since Ψg(·) is self-inverse, the absolute value of its Jacobian must
be 1. The full proposal is, therefore,

(z′′, z′′′) = q2(z𝑘 , z′) =
(
𝜽 ′ − Ψg(p𝑘),Ψg(p𝑘), 𝜽 ′,−Ψg(p𝑘)

)
.

However, since z′′′ plays no part in any subsequent movement and since
momenta do not figure in the acceptance probabilities, it can simplify
notation to think of the proposal as

(𝜽 ′′, p′′) = q∗2(𝜽 𝑘 , p𝑘 , 𝜽 ′) :=
(
𝜽 ′ − Ψg(p𝑘),Ψg(p𝑘)

)
,

the initial acceptance probability as

𝛼∗1 (𝜽 𝑘 , 𝜽 ′) := min
{
1,
𝜋(𝜽 ′)
𝜋(𝜽 𝑘)

}
,

122 Non-Reversible MCMC

and the second acceptance probability as

𝛼∗2 (𝜽 , 𝜽 ′, 𝜽 ′′) = min
[
1,
{1 − 𝛼∗1 (𝜽

′′, 𝜽 ′)}𝜋(𝜽 ′′)
{1 − 𝛼∗1 (𝜽 𝑘 , 𝜽

′)}𝜋(𝜽 𝑘)

]
.

The full algorithm is given in Algorithm 6 and illustrated in Figure 4.7.

Algorithm 6: Discrete Bouncy Particle Sampler
Input: Density 𝜋(𝜽), initial value 𝜽0 and speed 𝛿, unit vector p0

sampled from U𝑑 .
for 𝑡 ∈ 0, . . . , 𝑇 − 1 do

Propose (𝜽 ′, p′) = q1(𝜽 𝑘 , p𝑘).
With a probability of 𝛼∗1 (𝜽 𝑘 , 𝜽

′) accept the proposal:
(𝜽 𝑘+1, p𝑘+1) ← (𝜽 ′, p′).

If the proposal is not accepted then propose
(𝜽 ′′, p′′) = q∗2(𝜽 𝑘 , p𝑘 , 𝜽

′).
With a probability of 𝛼∗2 (𝜽 𝑘 , 𝜽

′, 𝜽 ′′) accept this proposal:
(𝜽 𝑘+1, p𝑘+1) ← (𝜽 ′′, p′′), otherwise (𝜽 𝑘+1, p𝑘+1) = (𝜽 𝑘 , p𝑘).

Flip the velocity: (𝜽 𝑘+1, p𝑘+1) = (𝜽 𝑘+1,−p𝑘+1).
end

As with Algorithm 5, we can ensure that Algorithm 6 is irreducible by
refreshing the unit vector p. This could involve sampling p𝑘 ∼ U𝑑 every
𝑚 iterations for some integer 𝑚, or with probability 𝑝 on any iteration;
however, this still allows for rejections causing the sampler to exactly retrace
the recent past. More usually, therefore, after every velocity flip step, the
following update is made:

p𝑘+1 =
𝛾p𝑘+1 +

√︁
1 − 𝛾2𝝃

∥𝛾p𝑘+1 +
√︁

1 − 𝛾2𝝃∥
,

where 𝝃 ∼ N(0, 1
𝑑
I𝑑) and 0 ≤ 𝛾 < 1.

Considering the combined effect of the initial proposal, the delayed-
rejection step and the momentum flip on a hypothetical particle at 𝜽 𝑘
with a velocity of p𝑘 moving along a level, frictionless surface provides
a useful insight into the behaviour of Algorithm 6. In the following we
define Rg(p) := −Ψg(p) = p − 2(p · ĝ) ĝ, which is a reflection of p in the
hyperplane perpendicular to g.

• If the initial proposal is accepted then the net effect is (𝜽 𝑘+1, p𝑘+1) =
(𝜽 𝑘 + 𝛿p𝑘 , p𝑘); the particle moves exactly as it should over a time 𝛿.

4.4 Improving Non-reversibility: Delayed Rejection 123

θk− 1

θk

θ ′

θ ′′

pk− 1

pk
−p′′

Figure 4.7 Heuristic of consecutive steps from the discrete
bouncy particle sampler. From (𝜽𝑘−1, p𝑘−1) the initial proposal is
accepted and the momentum is flipped, leading to (𝜽𝑘 , p𝑘). The
initial proposal from this point (𝜽 ′ is shown but p′ = −p𝑘 is not) is
rejected. The thick solid line shows a contour of 𝜋 at 𝜽 ′ with the
tangent line at 𝜽 ′ shown dashed. The full proposal includes
(𝜽 ′′, p′′); the figure shows −p′′ to emphasise how, if the proposal
is accepted, with the subsequent momentum flipped the
movement is analogous to a bounce off the tangent hyperplane.

• If the initial proposal is rejected, but the delayed-rejection proposal is ac-
cepted, then the net effect is (𝜽 𝑘+1, p𝑘+1) =

(
𝜽 𝑘 + 𝛿p𝑘 + 𝛿Rg(p𝑘),Rg(p𝑘)

)
;

the particle moves forward for a time 𝛿 to 𝜽 ′ then reflects off the hyper-
plane perpendicular to g and moves forward for another time 𝛿.
• If both the initial step and the delayed-rejection step are rejected then
(𝜽 𝑘+1, p𝑘+1) = (𝜽 𝑘 ,−p𝑘); the particle reverses direction.

If it were not for the occasional full rejection, the path of the points
outputted from the algorithm would resemble a time discretisation of the
smooth path of a particle moving along a frictionless surface and occasion-
ally bouncing off a hard barrier in the hyperplane perpendicular to the local
gradient. For this reason, the algorithm is known as the Discrete Bouncy
Particle Sampler. In the limit, as 𝛿 ↓ 0 and the number of steps is increased
in proportion to 1/𝛿, this becomes a continuous-time algorithm known as
the Bouncy Particle Sampler, which we shall meet in Section 5.3.1.

124 Non-Reversible MCMC

1 0 1

1.0

0.5

0.0

0.5

1.0

1 0 1

1.0

0.5

0.0

0.5

1.0

Figure 4.8 Trajectories after 5000 iterations (left) and 50000
iterations (right) of the discrete bouncy particle sampler on the
two-dimensional ring target of Figures 4.5 and 4.6, and using the
same step size.

Performance on the Ring-shaped Target
We exemplify the improved trajectories of the discrete bouncy particle
sampler by implementing it on the same two-dimensional ring-shaped target
for which the guided random walk with a directional update every 10
iterations took 50000 iterations to explore (Figure 4.5) and the random
walk Metropolis with the same step size took 300000 iterations to explore
(Figure 4.6 shows the first 50000 iterations).

Our discrete bouncy particle sampler uses the same step size as the earlier
algorithms and sets 𝛾 so that the direction of travel is only partially forgotten
from just after one bounce to just before the next (see Sherlock and Thiery,
2022). Figure 4.8 shows the path of the discrete bouncy particle sampler
after 5000 (left) and 50000 (right) iterations, on the two-dimensional ring
target. Exploration of the full circle takes only a tenth of the number of
iterations that the guided random walk requires and a sixtieth of the number
of iterations required by the RWM. The coverage after the full 50000
iterations is also more complete than when using the guided random walk.

4.5 Chapter Notes
Perhaps the earliest theoretical results showing that non-reversible chains
have better mixing properties were given in Diaconis et al. (2000). The re-

4.5 Chapter Notes 125

sults from a pre-print of this work were extended in Chen et al. (1999). See
also Neal (2004) and Sun et al. (2010) which show that non-reversible sam-
plers reduce asymptotic variance. More recent results are given in Bierkens
(2016).

The discrete bouncy particle sampler, described in Section 4.4, is given
in Sherlock and Thiery (2022). Similar algorithms appear in Neal (2003)
and Vanetti et al. (2017). The key difference is the use of "external bounces"
rather than "internal bounces": reflection happens in the current point rather
than the proposed point, so that: (𝜽 ′′, p′′, 𝜽 ′′′, p′′′) = (𝜽 𝑘 ,Ψg(p𝑘), 𝜽 𝑘 +
Ψg(p𝑘),−Ψg(p𝑘)), where g = ∇ log 𝜋(𝜽 𝑘). Use of the bounce move that
is key to the success of the discrete bouncy particle sampler will be seen
within the continuous-time bouncy particle sampler described in the next
chapter. It has also been used in other discrete-time MCMC algorithms.
For example, the Hug move in Ludkin and Sherlock (2022) uses repeated
bounces in the same way that HMC uses repeated leapfrog steps, with the
result that the path to the proposal stays close to the contour of 𝜋 on which it
started, and just as with HMC, for a given integration time, the acceptance
probability can be made as close to 1 as desired by reducing the step size.

An alternative to the lifting schemes described in this chapter are methods
that adapt a reversible Markov chain to a non-reversible one without adding
additional states. The general approach is to find a loop of states, and
then adapt the probability flow around this loop such that the net flow of
probability at each state is preserved. For example, if we have states 𝑖, 𝑗 and
𝑘 then we can reduce each of the three probabilities of moving from 𝑖 to 𝑖, 𝑗
to 𝑗 and 𝑘 to 𝑘 by the minimum of the three and increase each of the three
probability transitions from 𝑖 to 𝑗 , 𝑗 to 𝑘 and 𝑘 to 𝑖 by the same amount, so
that the invariant distribution of the chain is unchanged. Such changes have
been described as adding vortices. These ideas are described in Sun et al.
(2010) and Turitsyn et al. (2011). See Suwa and Todo (2010) for related
ideas. These constructions are hard to adapt to general Markov chains,
particularly chains without discrete states, though see Bierkens (2016) for
an approach to adapt the Metropolis–Hastings acceptance probability to
introduce non-reversibility.

5

Continuous-Time MCMC

The previous chapter introduced the idea of non-reversible MCMC, and
demonstrated that non-reversibility may help improve the Markov chain’s
mixing by suppressing random-walk behaviour. In this chapter, we now
present a class of non-reversible MCMC algorithms that can target a general
distribution, 𝜋(𝜽). These algorithms are different from standard MCMC
algorithms in that they are based on simulating a continuous-time Markov
chain. Furthermore, specific examples of these continuous-time MCMC
algorithms can be derived as continuous-time limits of the non-reversible
algorithms we introduced in the previous chapter.

As a way of motivating these algorithms, we will first look at this
continuous-time limit. The resulting continuous-time process is from a
class of processes called piecewise deterministic Markov processes. We
will introduce some background on this class of processes, including some
details around how we can simulate their continuous-time trajectories, be-
fore introducing example MCMC algorithms and various extensions. These
algorithms use gradient information, and unless stated otherwise, we will
assume that the target distribution 𝜋(𝜽) is differentiable everywhere (in
practice being continuous and differentiable almost everywhere is suffi-
cient).

Within this chapter, we will need to refer to both components of a vector
and possibly the state of the vector at different times. To distinguish between
these, we will use the convention that when both time and component are
needed, we subscript by time and superscript by the component. So, for
example, \ (𝑖)𝑡 , will be the 𝑖th component of the state, 𝜽 , at time 𝑡.

5.1 Continuous-Time MCMC as the Limit of Non-Reversible
MCMC

To help build intuition for continuous-time MCMC, and to see how it
links to discrete-time MCMC algorithms, we will show we can derive the

126

5.1 Continuous-Time MCMC as the Limit of Non-Reversible MCMC127

continuous-time algorithm as the limit of a discrete-time algorithm as we
let the step size in the discrete-time algorithm to tend to 0. Here, we will
consider this limiting argument at an informal level, before presenting a
more formal justification for continuous-time MCMC methods.

We will consider sampling from a 1-dimensional target distribution using
a simplified version of the non-reversible guided random walk algorithm
that was introduced in Section 4.3. Our simplification is to assume that the
step size at each iteration is fixed. Our state will still be (\, 𝑝), with 𝑝 either
1 or −1 and specifying the direction of the next proposed move, and we will
let the size of the move be equal to some fixed value 𝛿. Such an MCMC
algorithm would not be irreducible, as it could only explore values of the
state that are integer multiples of 𝛿 away from its initial value. However,
the algorithm will still have the correct invariant distribution; i.e. if we
simulate the initial state from the target distribution for \ and a uniform
distribution for 𝑝, then this will also be the distribution of the state at any
future iteration. The issue of lack of irreducibility vanishes in the limit as
𝛿→ 0.

As a reminder, if the target distribution of interest is 𝜋(\) then the MCMC
algorithm will iterate the following moves

(1a) Propose a move from (\, 𝑝) to (\+𝛿𝑝,−𝑝). Accept this with the standard
Metropolis–Hastings acceptance probability, which simplifies to

min
{
1,
𝜋(\ + 𝛿𝑝)
𝜋(\)

}
(1b) Move from (\ ′, 𝑝) to (\ ′,−𝑝).

In step (1a), we propose a move of size 𝛿 in direction 𝑝. If we accept this
move, then we will flip the direction 𝑝 in both steps (1a) and (1b) – so the
direction will be the same at the next iteration. If we reject the move, then
we will only flip 𝑝 in step (1b) and thus the direction of the move will be
flipped for the next iteration.

Under this framework, we can then consider letting 𝛿→ 0 while increas-
ing the number of iterations 𝑛. That is we fix a value 𝑠 and for any number
of iterations, 𝑛 will set 𝛿 = 𝑠/𝑛. We will scale time so that the 𝑖th MCMC
transition will occur at time 𝑖𝛿, and define (\𝑡 , 𝑝𝑡) to be the value of the
state after the 𝑖th MCMC transition for 𝑖𝛿 ≤ 𝑡 < (𝑖 + 1)𝛿.

128 Continuous-Time MCMC

Now, for each move in step (1a) the rejection probability for small 𝛿 is

max {0, 1 − exp[log 𝜋(\ + 𝛿𝑝) − log 𝜋(\)]}

= max
{
0, 1 − exp

[
d log 𝜋(\)

d\
𝛿 + 𝑜(𝛿)

]}
= max

{
0,−𝑝 d log 𝜋(\)

d\

}
𝛿 + 𝑜(𝛿),

assuming that, for example, the derivative of 𝜋(\) is continuous.
Thus in our limit as 𝛿→ 0, rejections in step (1a) will occur as events in

a Poisson process of rate

_(\𝑡 , 𝑝𝑡) = max
{
0,−𝑝𝑡

d log 𝜋(\𝑡)
d\

}
.

The dynamics between these events will be deterministic, with 𝑝𝑡 being
constant and \𝑡 changing as per a constant velocity model with velocity
𝑝𝑡 . At each event, the velocity will just flip. While the process is moving
to areas of higher probability density, as defined by 𝜋(\), the rate of the
Poisson process will be 0. Thus events will only occur if the process is
moving to areas of lower probability mass.

How does this limiting, continuous-time algorithm compare to the algo-
rithm of Gustafson (1998)? We will compare with the standard, irreducible
version of Gustafson (1998) where the step size at each iteration is random.
We show trace plots for both algorithms for sampling from a mixture of
two Gaussians in Figure 5.1. The target distribution is an equal mix of a
Gaussian with mean 2 and variance 1 and with mean 0 and variance 0.12.
This was chosen so that we have two modes where different step sizes would
be optimal, whilst still allowing for sufficient overlap of the modes that the
chains would mix between them.

We can see that qualitatively the two trace-plots are similar. Both methods
produce zig-zag-like traces, as they will continue to move in the same
direction when moving to areas of higher probability density. However, the
continuous-time process has a number of potential advantages:

• If we could simulate the continuous-time trajectory directly, then it has
the benefit of having fewer events where the velocity changes (and where
the state needs to be updated) than iterations of Gustafson’s algorithm
– in our example, there are around 200 events in the continuous-time
algorithm as compared to 1000 iterations of Gustafson’s algorithm.
• It also has the benefit of less tuning, as no step size needs to be specified.

5.2 Piecewise Deterministic Markov Processes 129

0 500 1000
Iteration (k)

0

1

2

3

4
x
k

0 50 100
Time (t)

0

1

2

3

4

x
t

Figure 5.1 Trace plots of Gustafson’s algorithm (left) and the
continuous-time limit (right) for sampling from a mixture of
Gaussians.

• Finally it has the advantage that the full continuous-time sample path can
be used to calculate Monte Carlo averages.

However, directly simulating the continuous-time trajectory is not normally
possible – and it is both the difficulty with simulating the continuous-
time process and the additional computational overhead of doing so that
are the main disadvantages. Furthermore, accounting for the very different
computational costs, per iteration versus per unit of continuous time, makes
the algorithms hard to compare theoretically. We will return to issues around
simulating continuous-time Markov processes like this below.

5.2 Piecewise Deterministic Markov Processes
The continuous-time limiting process we derived in the previous section is
an example of a piecewise deterministic Markov process, or PDMP. These
are Markov processes that evolve deterministically between a set of random
events. We will now introduce these processes before considering how they
can be designed and used to sample from a target distribution of interest.

5.2.1 What is a PDMP?
We will denote the state of a PDMP at time 𝑡 by z𝑡 . A PDMP is defined by
the following properties:

130 Continuous-Time MCMC

(i) The deterministic dynamics. The PDMP evolves deterministically be-
tween a set of event times. We consider PDMPs where the deterministic
dynamics are specified through an ordinary differential equation

dz𝑡
d𝑡

= 𝝓(z𝑡), (5.1)

for some gradient field 𝝓(·). We will also define 𝚽 to be the transition
function, or flow map, for these dynamics, so for 𝑠 > 0 the solution to
the differential equation satisfies z𝑠+𝑡 = 𝚽(z𝑡 , 𝑠).

(ii) The event rate. Random events occur at a rate _(z𝑡) that depends on the
current state.

(iii) The transition kernel at events. At each event, at time 𝜏, the state changes
according to some Markov transition kernel Q (Z𝜏 ∈ ·|z𝜏−), where

z𝜏− = lim
𝜖 ↓0

z𝜏−𝜖

is the value of the state immediately before the event. That isQ (Z𝜏 ∈ ·|z𝜏−)
defines the conditional probability of moving to set ·, given the state im-
mediately before the event.

To simplify exposition, and because this is consistent with the PDMPs we
will use for MCMC, we will primarily focus on discrete transition kernels at
events, and let 𝑞(·|z) denote the probability mass function associated with
the transition kernel. Though the ideas below extend naturally to continuous
transition kernels.

As the deterministic dynamics are Markov, and the event rate and transi-
tion density depend just on the current state, then the resulting process will
be Markov.

5.2.2 Simulating PDMPs
To be able to use a PDMP as the basis of a sampling algorithm, we will
need to be able to simulate and store realisations of the PDMP. First, we can
store a realisation of the continuous-time path of a PDMP by storing just
the initial state of the PDMP, and the time and event immediately after each
event. We will call these points the skeleton of the realisation. If we simulate
a PDMP up to time𝑇 then its skeleton will be of the form {𝑡𝑘 , z𝑡𝑘 }𝑛𝑘=0, where
𝑡0 = 0, and 𝑡1, . . . , 𝑡𝑛 are the event times of the PDMP prior to 𝑇 . Given
this skeleton, we can fill in the continuous-time path using the transition
function for the deterministic dynamics:

z𝑡 = 𝚽(z𝑡𝑘 , 𝑡 − 𝑡𝑘),where 𝑡𝑘 is the largest skeleton time less than 𝑡.

5.2 Piecewise Deterministic Markov Processes 131

Thus simulating a PDMP will just require the ability to simulate the skeleton
points. If we assume that simulating from the transition density at events is
straightforward, then the only challenge will be simulating the event times
themselves. We can do this by using the following argument that shows that
the time until the next event can be recast as the time until the first event in
a time inhomogeneous Poisson process.

To simplify notation we will consider simulating the time of the first
event, and denote the initial state as Z0 = z. By the Markov property, the
same approach can then be applied to simulating subsequent events: as if
the current state is Z𝑡 = z then the subsequent time until the next event
is the same as the time until the first event if we start the process at state
Z0 = z.

If there has not been an event by time 𝑡, then due to the deterministic
dynamics between events we know that the state at time 𝑡 will be z𝑡 =

𝚽(z, 𝑡). The instantaneous rate of an event at time 𝑡, if there has been no
event before 𝑡, is thus _(z𝑡) = _(𝚽(z, 𝑡)). Thus, the rate of the first event
of the PDMP is equal to the rate of the first event in an inhomogeneous
Poisson process with rate

_̃z(𝑡) = _(𝚽(z, 𝑡)).

Here, we use the tilde symbol to distinguish this rate from the rate function,
_, that depends on the state. We also subscript the rate by z, the initial
state. As described above, by the Markov property, if we have simulated the
PDMP until time 𝑠 and the current state is z𝑠, then the rate of the next event
as a function of the further time, 𝑡, until the next event will be _̃z𝑠 (𝑡).

As a result, we have transformed the problem of simulating a PDMP to
that of simulating the first event of a time inhomogeneous Poisson process.
There are several methods for simulating such an event time (see e.g.
Lewis and Shedler, 1979; Bouchard-Côté et al., 2018) and we will outline
three general strategies for doing so. Whether these can be implemented in
practice depends on the form of _̃z, and we will return to this with some
examples later.

Direct Simulation by Inversion
In theory, one can simulate directly the time to the next event. Let 𝜏 be
the random variable that is the time until the first (or next) event. Standard
properties of a Poisson process give that the probability of no event by time
𝑡 is

P (𝜏 > 𝑡) = exp
{
−

∫ 𝑡

0
_̃z(𝑠)d𝑠

}
.

132 Continuous-Time MCMC

For a continuous random variable, 𝑋 , with distribution function 𝐹𝑋 (·), we
have that the transformed random variable 𝐹𝑋 (𝑋) has a standard uniform
distribution. From this, we can simulate 𝑋 by simulating 𝑢, a realisation
of a standard uniform distribution and setting 𝑥 = 𝐹−1

𝑋
(𝑢). The distribution

function for 𝜏 is 1 − P (𝜏 > 𝑡), thus we can simulate 𝜏 from 𝑢 by solving

𝑢 = 1 − exp
{
−

∫ 𝜏

0
_̃z(𝑠)d𝑠

}
.

This can be rearranged to

−
∫ 𝜏

0
_̃z(𝑠)d𝑠 = log(1 − 𝑢).

In practice, it is common to further simplify this expression using that if
𝑈 is a standard uniform random variable then − log(1 −𝑈) has a standard
exponential distribution. Thus if 𝑤 is a realisation of a standard exponential
random variable then 𝜏 can be simulated as the solution of∫ 𝜏

0
_̃z(𝑠)d𝑠 = 𝑤. (5.2)

A summary of this approach is given in Algorithm 7.

Algorithm 7: Direct simulation of event time
Input: Rate function _̃z.

Simulate 𝑤, from a standard exponential distribution.
Find 𝜏 ≥ 0 the (smallest) solution to∫ 𝜏

0
_̃z(𝑠)d𝑠 = 𝑤.

Output: 𝜏.

Whether we can implement direct simulation depends on whether we
can solve (5.2). This is possible if _̃z(𝑠) is constant, linear, or piecewise
linear in 𝑠. It is also possible if it is some other simple function, such as
proportional to the exponential of a linear function of 𝑠.

Poisson Thinning
What if we cannot simulate the event directly by inversion? In this case, the
most common approach to simulation is based on Poisson thinning. This
approach is based on the following property of Poisson processes: If we
have a Poisson process with rate _+(𝑠), and we simulate points from this

5.2 Piecewise Deterministic Markov Processes 133

Poisson process and then accept each point with probability 𝛼(𝑠), then the
accepted points have the same distribution as points from a Poisson process
with rate _+(𝑠)𝛼(𝑠). As we are only keeping, i.e. accepting, some of the
simulated points, this is called a thinned point process.

Poisson thinning inverts this property. For any rate function _+(𝑠) that
upper bounds _̃z(𝑠), i.e. where _+(𝑠) ≥ _̃z(𝑠) for all 𝑠 ≥ 0, we can simulate
the time until the next event as the first event of a thinned Poisson process.
This leads to Algorithm 8

Algorithm 8: Simulation of event time via Poisson thinning
Input: Rate functions _+ and _̃z, with _+(𝑠) ≥ _̃z(𝑠) for all 𝑠 ≥ 0.
Set 𝑠 = 0 and 𝜏 = 0
while 𝜏 = 0 do

Simulate 𝑡, the time of the first event after 𝑠 in a Poisson process
with rate _+.

Set 𝑠 = 𝑡.
With probability _̃z(𝑡)/_+(𝑡), set 𝜏 = 𝑡.

end
Output: 𝜏, the first event in a Poisson process with rate _̃z.

For this to work we need to be able to upper bound _̃z by a simple rate
function, for which we can directly simulate events. In practice, this would
often be a linear or piecewise linear rate function. The efficiency of Poisson
thinning depends on how close the upper bound rate is to _̃z. In practice,
we can improve on the simple Poisson thinning algorithm with adaptive
thinning. That is, if we simulate an event and then reject it, we can use the
information from evaluating _̃z to improve our upper bound. We will see
some examples of such adaptive thinning below.

Superposition
The final property of Poisson processes that can help with simulating their
events is that of superposition. This says that if we have two Poisson pro-
cesses, one with rate _ (1) (𝑠) and one with rate _ (2) (𝑠), and we indepen-
dently simulate events from each process and take the union of events, then
these have the same distribution as events in a Poisson process with rate
_ (1) (𝑠) + _ (2) (𝑠).

In terms of simulating the first event in a Poisson process, this can be
re-expressed as if 𝜏 (1) is the first event time for a Poisson process with
rate _ (1) (𝑠), and 𝜏 (2) is the first event time for a Poisson process with rate

134 Continuous-Time MCMC

_ (2) (𝑠), then min{𝜏 (1) , 𝜏 (2) } is distributed as the first event time in a Poisson
process with rate _ (1) (𝑠) + _ (2) (𝑠).

By induction, superposition trivially applies if we consider more than
two independent Poisson processes. That is, the time of the first event in
any of the processes is distributed as the time of the first event of a Poisson
process whose rate is the sum of the rates. Superposition can be useful
as it allows us to split a complex rate function into a sum of simpler rate
functions. If we can simulate events from processes with each of the simpler
rates, then it allows us to simulate events from the process with the complex
rate function.

5.2.3 The Generator and Invariant Distribution of a PDMP
In order to use a PDMP to sample from a target distribution, we first need
to be able to determine what the stationary distribution of a given PDMP
is. Here, we give an informal derivation of how to calculate the invariant
distribution of a PDMP. (Assuming the PDMP satisfies some regularity
conditions, and in particular is irreducible, then this invariant distribution
will be its stationary distribution.) In the next section, we will invert this
characterisation of the invariant distribution to construct simple recipes for
the dynamics of a PDMP to have a given target distribution as its stationary
distribution. In terms of understanding the development of PDMP samplers
in the rest of this chapter, the key result is (5.4) below – and those not
interested in the intuition behind this result could skip the intervening
material in this subsection.

First, we need to consider the generator of our PDMP. This is rigorously
derived in Davis (1984). Remember from Section 1.4.2 that the generator
of a continuous-time Markov process is an operator that gives the time
derivative of the expected value of a function of the state, as a function of
its current value. If L is the generator, and ℎ a suitable test function from
the domain of the generator, then

(Lℎ) (z) = lim
𝑡↓0

E [ℎ(Z𝑡) |Z0 = z] − ℎ(z)
𝑡

.

Informally we can calculate the generator by considering the two types
of dynamics of the PDMP. First, if we consider solely the deterministic dy-
namics (5.1), then the change in ℎ(z𝑡) is deterministic and the contribution
to the generator is just the time-derivative of ℎ(z𝑡) at 𝑡 = 0, which by the

5.2 Piecewise Deterministic Markov Processes 135

product rule is
dℎ(z𝑡)

d𝑡

����
𝑡=0

= 𝝓(z) · ∇ℎ(z).

Second, we have the contribution from the random events. The probability
of an event in [0, 𝑡] is _(z)𝑡 + 𝑜(𝑡). If an event occurs, the change in ℎ(z)
is EQ(· |z) [ℎ(Z′)] − ℎ(z) + 𝑜(𝑡), where the expectation is with respect to
Z′ ∼ Q(·|z), the transition kernel at an event. This gives a contribution to
the generator that is

_(z)
[
EQ(· |z) [ℎ(Z′)] − ℎ(z)

]
.

Thus the generator is

(Lℎ) (z) = 𝝓(z) · ∇ℎ(z) + _(z)
[
EQ(· |z) [ℎ(Z′)] − ℎ(z)

]
.

The domain of the generator is given in Davis (1984). One extension of
PDMPs that will be relevant later is that we can introduce boundaries,
with additional specified, possibly random, behaviour if the PDMP hits
a boundary. In such a case, the behaviour at the boundaries affects the
generator solely through its domain. Essentially, the domain is reduced
to include only those functions whose expectation is unaffected by the
dynamics on the boundary.

If we start the PDMP with an initial distribution 𝜋(z) for Z0, then the
derivative of E [ℎ(Z𝑡)] at 𝑡 = 0 is equal to the average of the generator
applied to ℎ(z) with respect to 𝜋(z). This is equal to∫

(Lℎ) (z)𝜋(z)dz.

For any ℎ in the domain of the generator, if 𝜋(z) is sufficiently well-behaved,
then this integral will be equal to∫

ℎ(z) (L∗𝜋) (z)dz, (5.3)

where L∗ is a different operator, called the adjoint of the generator.
We can attempt to define the invariant distribution of the PDMP by

the property that, if we draw Z0 from this invariant distribution, then the
expectation of any function of the state will be constant over time – as
if started from the invariant distribution, the marginal distribution of the
PDMP will not change. Thus (5.3) must be equal to 0 if 𝜋 is the invariant
distribution. As this must happen for any function ℎ of the state, for which
the expectation exists, this suggests that 𝜋 must satisfy (L∗𝜋) (z) = 0.

It is possible to derive the adjoint L∗ using integration by parts. From

136 Continuous-Time MCMC

this, we have that (L∗𝜋) (z) = 0 implies that the invariant distribution must
satisfy

−
𝑑∑︁
𝑖=1

𝜕𝜙𝑖 (z)𝜋(z)
𝜕𝑧𝑖

+
∑︁

z′
𝜋(z′)_(z′)𝑞(z|z′) − 𝜋(z)_(z) = 0, (5.4)

where 𝑞(z|z′) is the probability mass function associated with the transition
kernel Q (·|z′). This equation has a natural interpretation. The first term
on the left-hand side quantifies the change in probability mass due to the
deterministic dynamics, the second term is the change due to events moving
into state z and the last is the change due to events that move the state out of
z. If 𝜋 is an invariant distribution, then the net change in probability mass
is zero.

In the following, we will use (5.4) to define the invariant distribution
of our PDMP. Though this requires inverting the informal argument we
have made – see Chevallier et al. (2021) for results that give relatively
weak conditions under which you can invert this argument and where (5.4)
implies that 𝜋(z) is the invariant distribution of our PDMP.

5.2.4 The Limiting Process of Section 5.1 as a PDMP
We can now recognise the limiting process derived in Section 5.1 as a
PDMP. Remember that we want to sample from a distribution 𝜋(\) for
some scalar \. To do this we introduced a velocity or momentum, 𝑝, and
defined a state z = (\, 𝑝) – strictly this is z = (\, 𝑝)⊤, but we will use the
shorthand (\, 𝑝) in the following. Henceforth, we will use the notation z,
or z𝑡 , and (\, 𝑝), or (\𝑡 , 𝑝𝑡) interchangeably – as viewed most helpful for
the given context. For reasons that will become apparent, we will call \ the
position component of the state, and 𝑝 the velocity component.

The limiting process of Section 5.1 was a PDMP with state z = (\, 𝑝),
with \ ∈ R and 𝑝 ∈ {−1, 1}, defined by the following properties:

(U1) Deterministic dynamics. The deterministic dyanamics are a constant ve-
locity model:

d\𝑡
d𝑡

= 𝑝𝑡 ,
d𝑝𝑡
d𝑡

= 0.

(U2) Event rate. The rate of events is

_(\, 𝑝) = max
{
0,−𝑝 d log 𝜋(\)

d\

}
.

5.2 Piecewise Deterministic Markov Processes 137

(U3) Transition kernel at events. At an event the velocity component of the
state flips, i.e. 𝑝𝜏 = −𝑝𝜏−.

We will call this PDMP the univariate PDMP.
It is possible to show, using (5.4), that the invariant distribution of this

PDMP is �̃�(z) = 𝜋(\)𝜋𝑝 (𝑝), where 𝜋𝑝 is the probability mass function
for a uniform distribution on {−1, 1}. That is the \-marginal is 𝜋(\), the
distribution we wish to sample from. Furthermore, under the invariant
distribution, 𝑝 is independent of \ and has a uniform distribution. For
this simple example, the invariant distribution will also be the stationary
distribution, unless we have reducibility caused by a region where 𝜋(\) = 0
that separates two regions with positive probability under 𝜋.

As we will be considering more general PDMP samplers, it is helpful
to consider a slightly different question. For PDMPs with the given deter-
ministic dynamics and transitions at events, how would we calculate event
rates that would give an invariant distribution whose \ marginal is 𝜋(\)? In
answering this question, we will cover the steps for showing that the event
rate given above leads to the stated invariant distribution.

To do this we will use (5.4). If we substitute in a distribution �̃�(\, 𝑝), and
the deterministic dynamics and transition kernel at events, this illustrates
that for �̃�(\, 𝑝) to be an invariant distribution, it must satisfy

−𝑝 d�̃�(\, 𝑝)
d\

+ _(\,−𝑝)�̃�(\,−𝑝) − _(\, 𝑝)�̃�(\, 𝑝) = 0. (5.5)

Here, the first term comes from the constant velocity deterministic dynam-
ics, and the second comes from there only being one possible transition to
state (\, 𝑝) at an event, and this is from a state (\,−𝑝).

So what event rate would lead to an invariant distribution with the cor-
rection \-marginal? In answering this question, we first see that there may
be a range of different event rates that would lead to a valid invariant distri-
bution. Not least because many possible invariant distributions would have
a \-marginal as 𝜋(\). So, our first step is to attempt to find a rate such that
the invariant distribution has \ independent of 𝑝. Denote such a distribution
by �̃�(z) = 𝜋(\)𝜋𝑝 (𝑝), where 𝜋𝑝 can be any distribution on {−1, 1}. Then
substituting this into (5.5), and using

d𝜋(\)
d\

= 𝜋(\) d log 𝜋(\)
d\

gives

−𝑝 d log 𝜋(\)
d\

𝜋(\)𝜋𝑝 (𝑝) + _(\,−𝑝)𝜋(\)𝜋𝑝 (−𝑝) − _(\, 𝑝)𝜋(\)𝜋𝑝 (𝑝) = 0.

138 Continuous-Time MCMC

If we consider \ for which 𝜋(\) > 0 then this states

_(\,−𝑝)𝜋𝑝 (−𝑝) − _(\, 𝑝)𝜋𝑝 (𝑝) = 𝑝
d log 𝜋(\)

d\
𝜋𝑝 (𝑝). (5.6)

If we consider the same argument, but for the state (\,−𝑝), we get

_(\, 𝑝)𝜋𝑝 (𝑝) − _(\,−𝑝)𝜋𝑝 (−𝑝) = −𝑝
d log 𝜋(\)

d\
𝜋𝑝 (−𝑝). (5.7)

Adding (5.6) to (5.7) gives

0 =
d log 𝜋(\)

d\
(
𝑝𝜋𝑝 (𝑝) − 𝑝𝜋𝑝 (−𝑝)

)
.

From this, we can conclude that the distribution 𝜋𝑝 must satisfy 𝜋𝑝 (𝑝) =
𝜋𝑝 (−𝑝), i.e. be the uniform distribution on {−1, 1}. This makes sense
intuitively. The transition at the events only changes the velocity. Thus
invariance for the \-component comes from averaging out the dynamics for
different 𝑝, and this requires that the invariant distribution for 𝑝 has a mean
of zero. As 𝑝 can only take two values, this means it must be the uniform
distribution. For the PDMPs that we consider later, that only change the
velocity at events and have constant velocity dynamics, a similar argument
holds that the invariant distribution for the velocity component must have
zero as the mean.

If we now return to our question of what rates will lead to an invariant
distribution with \-marginal equal to 𝜋(\), and substitute in (5.7) that
𝜋𝑝 (𝑝) = 𝜋𝑝 (−𝑝) = 1/2 for 𝑝 ∈ {−1, 1} then, by removing this common
factor, we get

_(\, 𝑝) − _(\,−𝑝) = −𝑝 d log 𝜋(\)
d\

.

A solution to this equation is the rate we specified above,

_(\, 𝑝) = max
{
0,−𝑝 d log 𝜋(\)

d\

}
. (5.8)

However, this is not the only solution. In fact, for any positive function
𝛾(\) ≥ 0, the rate

max
{
0,−𝑝 d log 𝜋(\)

d\

}
+ 𝛾(\),

will also lead to the same invariant distribution.
The rate in (5.8) is the smallest rate that will lead to the required invariant

distribution. This is often called the canonical rate. Intuitively, there are
two advantages of using the canonical rate, as opposed to a larger rate. The

5.3 Continuous-time MCMC via PDMPs 139

first is that a larger rate will lead to more events, and thus is likely to have a
larger computational cost for simulating the resulting PDMP. The second is
that a larger rate will lead to more changes in velocity and will re-introduce
the random walk behaviour that we were trying to avoid with non-reversible
MCMC. Thus, we would expect that using the canonical rate will lead to
better mixing.

A final comment on the rates we are required to use, such as the canonical
rate, is that they depend on the target distribution 𝜋(\) only through the
derivative of ∇ log 𝜋(\). This is important as it means that 𝜋(\) only needs
to be known up to a constant of proportionality, as is commonly the case for
sampling from the posterior distribution in Bayesian statistics, see Section
1.1.5.

5.3 Continuous-time MCMC via PDMPs
In practice, we will want to use MCMC to sample a target density in R𝑑 .
Various PDMPs generalise the process introduced in the previous section to
𝑑 > 1. We will describe three such families of PDMPs, all of which reduce
to the univariate PDMP of Section 5.2.4 if 𝑑 = 1 but differ for 𝑑 > 1. They
each share some common features, which we will describe first.

Assume we wish to sample from 𝜋(𝜽)where 𝜽 is 𝑑-dimensional. The state
of our PDMP will be z𝑡 = (𝜽⊤𝑡 , p⊤𝑡)⊤, where p𝑡 is also 𝑑-dimensional. As we
use the convention that vectors are column vectors, when defining z𝑡 we have
had to transpose these vectors to concatenate 𝜽 𝑡 and p𝑡 . In the following,
to simplify notation, we will abuse this and just write z𝑡 = (𝜽 𝑡 , p𝑡). As
before, we can think of 𝜽 as the position component of the state, and p as
the velocity.

The deterministic dynamics of the three families of PDMPs will be the
same:

(CV) Deterministic dynamics. The process evolves according to a Constant
Velocity (CV) model.

d𝜽 𝑡
d𝑡

= p𝑡 ,
dp𝑡
d𝑡

= 0, (5.9)

or in the notation we used to define PDMPs, 𝝓 = (p, 0). The solution of
the deterministic dynamics are

𝚽(z, 𝑡) = 𝚽((𝜽 , p), 𝑡) = (𝜽 + 𝑡p, p). (5.10)

Furthermore, they also only allow the velocity component to change at
events.

140 Continuous-Time MCMC

The three families of PDMPs will differ in terms of the possible values
for the velocity component, the event rate, and the transition kernel for
the velocity at events. In each case, these are chosen so that the invariant
distribution of the PDMP will have a 𝜽-marginal that is 𝜋(𝜽), and for which
the velocity component, p, is independent of the position 𝜽 . Throughout,
we will denote the invariant distribution as �̃�(𝜽 , p) = 𝜋(𝜽)𝜋p(p), though as
mentioned, the form of 𝜋p will differ between different families of PDMPs.

Before we describe the three families in detail, it is helpful to introduce
some notation. We will use ∇𝜽 to denote the gradient vector with respect
to 𝜽 only. This is the 𝑑-dimensional column vector whose entries are the
partial derivatives with respect to the components of 𝜽 . The first term in
the equation for the invariant distribution of the PDMP (5.4) will be the
same for all three families as they share the same deterministic dynamics
and form of the invariant distribution. Ignoring the minus sign, this term is

2𝑑∑︁
𝑖=1

𝜕𝜙𝑖 (z)�̃�(z)
𝜕𝑧𝑖

=

𝑑∑︁
𝑖=1

𝜕𝑝𝑖 �̃�(𝜽 , p)
𝜕\𝑖

= 𝜋p(p)
𝑑∑︁
𝑖=1

𝑝𝑖
𝜕𝜋(𝜽)
𝜕\𝑖

= 𝜋p(p)
𝑑∑︁
𝑖=1

𝜋(𝜽)𝑝𝑖
𝜕 log 𝜋(𝜽)

𝜕\𝑖

= �̃�(𝜽 , p) (p · ∇𝜽 log 𝜋(𝜽)) . (5.11)

Here, we have first used that only the \𝑖 components are changing, and then
used �̃�(𝜽 , p) = 𝜋(𝜽)𝜋p(p). The third step comes from the definition of the
derivative of log 𝜋(𝜽) in terms of the derivative of 𝜋(𝜽), and the final step
from using 𝜋(𝜽)𝜋p(p) = �̃�(𝜽 , p).

5.3.1 Different Samplers
The Coordinate Sampler

Possibly the simplest extension of our univariate PDMP to one that samples
from a multi-dimensional distribution is the Coordinate Sampler of Wu
and Robert (2020). For this sampler, the set of possible velocities is Vcs =

{±e𝑖}𝑑𝑖=1 where e𝑖 is the 𝑖th unit vector. That is, e𝑖 is the unit vector whose 𝑖th
component is 1, and all other components are 0. Thus, the possible velocities
correspond to moving in either a positive or negative direction along one
of the coordinate axes in R𝑑 . It can be viewed as a sampler which applies
the univariate PDMP dynamics along each coordinate in turn – though
the order in which different coordinate directions are chosen is random.
Introducing a constant refresh rate _r ≥ 0, the dynamics of the coordinate

5.3 Continuous-time MCMC via PDMPs 141

sampler involve the constant velocity (CV) deterministic dynamics together
with

(CS1) Event rate. Events occur with the rate

_cs(𝜽 , p) = max {0,−p · ∇𝜽 log 𝜋(𝜽)} + _r.

(CS2) Transition kernel at events. At an event, the probability of switching to a
new velocity p′ ∈ Vcs is

𝑞cs((𝜽 , p′) | (𝜽 , p)) =
1

𝐶 (𝜽) (max {0, p′ · ∇𝜽 log 𝜋(𝜽)} + _r) ,

where the normalising constant is

𝐶 (𝜽) =
∑︁

p′∈Vcs

(max {0, p′ · ∇𝜽 log 𝜋(𝜽)} + _r) = 2𝑑_r+
𝑑∑︁
𝑖=1

����𝜕 log 𝜋(𝜽)
𝜕\𝑖

���� .
The refresh rate _r introduces additional random velocity switches. As
discussed above, intuitively a larger refresh rate will lead to more random
walk behaviour and thus worse mixing. However, choosing _r > 0 allows
for stronger theoretical results about the sampler, including that the sampler
will be irreducible unless e.g. 𝜋(𝜽) has disconnected regions where there
is positive probability.

The invariant distribution of the Coordinate Sampler is given by the
following result.

Theorem 5.1 For any _r ≥ 0, the Coordinate Sampler, whose dynam-
ics are defined by (CV), (CS1) and (CS2), has an invariant distribution
�̃�(𝜽 , p) = 𝜋(𝜽)𝜋p(p) where 𝜋p is the uniform distribution overVcs.

Proof We show this result by showing that (5.4) holds. To simplify ex-
pressions slightly, we will use the notation that for any scalar 𝑎 we have
{𝑎}+ = max{0, 𝑎}.

Substituting in the event rate and transition kernel and distribution �̃�, for
p ∈ Vcs, the left-hand side of (5.4) is

�̃�(𝜽 , p) (−p · ∇𝜽 log 𝜋(𝜽)) − �̃�(𝜽 , p) ({−p · ∇𝜽 log 𝜋(𝜽)}+ + _r)
+

∑︁
p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r)�̃�(𝜽 , p′)𝑞cs((𝜽 , p) | (𝜽 , p′)),

where we have used (5.9) to simplify the first term. By the definition of �̃�,

142 Continuous-Time MCMC

we have �̃�(𝜽 , p) = �̃�(𝜽 , p′) for all p, p′ ∈ Vcs. Thus this simplifies to

−p · ∇𝜽 log 𝜋(𝜽) − ({−p · ∇𝜽 log 𝜋(𝜽)}+ + _r)
+

∑︁
p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r)𝑞cs((𝜽 , p) | (𝜽 , p′)).

Now using the definition of 𝑞cs, we get that the final term in this expression
is ∑︁

p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r)𝑞cs((𝜽 , p) | (𝜽 , p′))

=
∑︁

p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r)
1

𝐶 (𝜽)
(
{p · ∇𝜽 log 𝜋(𝜽)}+ + _r

)
=

(
{p · ∇𝜽 log 𝜋(𝜽)}+ + _r

) 1
𝐶 (𝜽)

∑︁
p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r)

=
(
{p · ∇𝜽 log 𝜋(𝜽)}+ + _r

)
,

where for the last line we use

𝐶 (𝜽) =
∑︁

p′∈Vcs

({−p′ · ∇𝜽 log 𝜋(𝜽)}+ + _r).

Substituting into our expression for the left-hand side of (5.4) gives

−p · ∇𝜽 log 𝜋(𝜽) − ({−p · ∇𝜽 log 𝜋(𝜽)}+ + _r) +
(
{p · ∇𝜽 log 𝜋(𝜽)}+ + _r

)
= −p · ∇𝜽 log 𝜋(𝜽) − ({−p · ∇𝜽 log 𝜋(𝜽)}+) +

(
{p · ∇𝜽 log 𝜋(𝜽)}+

)
.

By considering separately the cases where p · ∇𝜽 log 𝜋(𝜽) ≥ 0 and p ·
∇𝜽 log 𝜋(𝜽) < 0, it is simple to see that this expression for the left-hand
side of (5.4) is 0, as required. □

The Zig–Zag Sampler
We now present the Zig–Zag algorithm of Bierkens et al. (2019b). This
algorithm has velocities inVzz = {±1}𝑑 , and the state moves simultaneously
along each coordinate axis, and the velocity determines which direction it
moves for each axis. There are 2𝑑 possible velocities, and if for example
𝑑 = 2, these will be (1, 1), (1,−1), (−1, 1) and (−1,−1). At an event, one
component of the velocity will change signs. The sampler gets its name
from the resulting dynamics consisting of zig-zagging lines.

To define the dynamics of the Zig–Zag Sampler it is helpful to introduce

5.3 Continuous-time MCMC via PDMPs 143

coordinate-specific rates

_𝑖 (𝜽 , p) = max
{
0,−𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

}
,

which is of the same form as the canonical rate of the univariate PDMP if
we just vary that 𝑖th component of 𝜽 . We also introduce the functions 𝐹𝑖,
for 𝑖 = 1, . . . , 𝑑, which flips the sign of the 𝑖th component of a vector. So if
p′ = 𝐹𝑖 (p) then 𝑝′𝑖 = −𝑝𝑖 and, for 𝑗 ≠ 𝑖, 𝑝′𝑗 = 𝑝 𝑗 .

The PDMP process is defined by CV dynamics together with

(ZZ1) Event rate. Events occur with the rate

_zz(𝜽 , p) =
𝑑∑︁
𝑖=1

_𝑖 (𝜽 , p).

(ZZ2) Transition kernel at events. At an event the probability mass function of
the transition is

𝑞zz(𝜽 , p′ |𝜽 , p) =
_𝑖 (𝜽 , p)
_zz(𝜽 , p)

, for p′ = 𝐹𝑖 (p).

Thus the position is unchanged, and we flip component 𝑖 of the velocity
with probability proportional to _𝑖 (𝜽 , p).

Here we have presented the dynamics in terms of the rate of an event
and a transition probability for that event. However, by the superposition
property of Poisson processes that was discussed above, one can equiva-
lently represent the dynamics in terms of 𝑑 possible event types. Event type
𝑖 corresponds to flipping the 𝑖th component of the velocity, and this event
occurs, independently of other events, with rate _𝑖. This view of the dynam-
ics of the Zig–Zag algorithm is often used in algorithmic implementations
to sample realisations of the process.

We can relate the Zig–Zag Sampler to a limiting version of the guided
random walk algorithm of Gustafson (1998) in a similar way to the argument
presented in Section 5.1. The Zig–Zag Sampler is the limit of an MCMC
algorithm that repeatedly applies one iteration of the guided random walk
algorithm to each component of 𝜽 in turn.

The following result gives the invariant distribution of the PDMP process.

Theorem 5.2 The Zig–Zag Sampler, defined by (CV), (ZZ1) and (ZZ2)
has invariant distribution �̃�(𝜽 , p) = 𝜋(𝜽)𝜋p(p) where 𝜋p is the uniform
distribution overVzz.

144 Continuous-Time MCMC

Proof Again, we show this result by showing that (5.4) holds. By the same
argument as in the first step of the proof of Theorem 5.1, if we substitute
the form of �̃� and the definition of the dynamics of the Zig–Zag Sampler
into the left-hand side of (5.4) we get that this is proportional to

−p · ∇𝜽 log 𝜋(𝜽) −
𝑑∑︁
𝑖=1

_𝑖 (𝜽 , p) +
𝑑∑︁
𝑖=1

_𝑖 (𝜽 , 𝐹𝑖 (p)). (5.12)

The first term relates to the change in probability mass due to the deter-
ministic dynamics and is the same term as appeared in the calculations for
the Coordinate Sampler. The second term is the rate of leaving the state
(𝜽 , p), and the third is the rate of moving to the state (𝜽 , p) which has to be
from a state of the form (𝜽 , 𝐹𝑖 (p)). As in the argument for the Coordinate
Sampler, we have removed the �̃� terms as these are the same for (𝜽 , p) and
(𝜽 , 𝐹𝑖 (p)) for all 𝑖.

To simplify this expression we use

−_𝑖 (𝜽 , p) + _(𝜽 , 𝐹𝑖 (p)) = 𝑝𝑖
𝜕 log 𝜋(𝜽)

𝜕\𝑖
,

and

p · ∇𝜽 log 𝜋(𝜽) =
𝑑∑︁
𝑖=1

𝑝𝑖
𝜕 log 𝜋(𝜽)

𝜕\𝑖
.

Thus (5.12) becomes
𝑑∑︁
𝑖=1

(
−𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

+ 𝑝𝑖
𝜕 log 𝜋(𝜽)

𝜕\𝑖

)
= 0,

as required. □

Bouncy Particle Sampler
The third sampler that we introduce is the Bouncy Particle Sampler, which
was first introduced as a way of simulating particle systems in statistical
mechanics (Peters and de With, 2012), but was then proposed as a general
sampling algorithm by Bouchard-Côté et al. (2018). It can be derived as
a continuous-time limit of the Discrete Bouncy Particle Sampler that was
introduced in Section 4.4. Like that algorithm, the transitions at events are
reflections of the velocity in the contours of log 𝜋(𝜽).

For a 𝑑-dimensional vector g, let ĝ = g/(g · g)1/2 be the unit vector in the
direction of g. As in Section 4.4, define the function Rg(p) = p− 2(p · ĝ) ĝ,
to be the reflection of p in the hyperplane perpendicular to g. An important

5.3 Continuous-time MCMC via PDMPs 145

property of a reflection, that we will use below, is that it preserves the size
of the vector. That is

Rg(p) · Rg(p) =
(
p − 2(p · ĝ) ĝ

)
·
(
p − 2(p · ĝ) ĝ

)
= p · p − 4(p · ĝ) p · ĝ + 4(p · ĝ)2ĝ · ĝ
= p · p − 4(p · ĝ)2 + 4(p · ĝ)2 = p · p,

where for the penultimate equality we have used that ĝ is a unit vector. Also,
reflection is an involution, that is Rg(Rg(p)) = p. To see this

Rg(Rg(p)) = Rg
(
p − 2(p · ĝ) ĝ

)
= p − 2(p · ĝ) ĝ − 2{(p − 2(p · ĝ) ĝ) · ĝ} ĝ
= p − 2(p · ĝ) ĝ − 2{p · ĝ − 2(p · ĝ)} ĝ
= p − 2(p · ĝ) ĝ + 2(p · ĝ) ĝ = p.

There are two versions of the Bouncy Particle Sampler, that differ only in
the set of possible velocities. We will mainly work with the version where
the velocities take values in R𝑑 , and have an invariant distribution that is
standard normal. For any refresh rate _r ≥ 0, the Bouncy Particle Sampler
in this case is a PDMP with constant velocity dynamics (CV) and

(BPS1) Event rate. Events occur at a rate

_BPS(𝜽 , p) = max{0,−p · ∇𝜽 log 𝜋(𝜽)} + _r.

(BPS2) Transition at events. At an event with probability 1 − _r/_BPS(𝜽 , p),
reflect the velocity in the hyperplane perpendicular to ∇𝜽 log 𝜋(𝜽), that
is the new velocity is

p′ = Rg(p), with g = ∇𝜽 log 𝜋(𝜽);

otherwise sample a new velocity, p′ from a standard normal distribution.
The position is unchanged at an event.

As with the Zig–Zag Sampler, we can interpret the dynamics in terms of
events of different types. In this case, we have reflection events that occur
with rate max{0,−p·∇𝜽 log 𝜋(𝜽)}, and refresh events that occur with rate_r.
If _r > 0 then Bouchard-Côté et al. (2018) prove that the resulting process
is irreducible, assuming weak conditions on 𝜋(𝜽). Furthermore, they give
an example where if _r = 0, the sampler will be reducible, and this occurs
if we were to use the Bouncy Particle Sampler to sample from a Gaussian
distribution. As many target distributions can be close to Gaussian, we may
have a reducible sampler, or one which mixes slowly if _r = 0. In practice,
tuning _r is important, as not only can the sampler mix poorly for _r ≈ 0,

146 Continuous-Time MCMC

but if we choose _r too large it will introduce random walk behaviour which
will also lead to poor mixing. We will return to this issue later in this section
and in Section 5.3.3

The alternative version of the algorithm has velocities that lie on the unit
𝑑-dimensional hypersphere. The only difference in terms of the dynamics
is that at a refresh event, we sample a new velocity from the uniform
distribution on the sphere rather than from a standard normal distribution.
Furthermore, there are extensions of the Bouncy Particle Sampler that only
partially refresh the velocity. That is at a refresh event we sample a new
velocity from a Markov kernel which has a standard normal distribution
(or for the alternative version a uniform distribution on the sphere) as its
stationary distribution.

The following result gives the invariant distribution of the Bouncy Parti-
cle Sampler.

Theorem 5.3 For any_r ≥ 0, the Bouncy Particle Sampler, whose dynam-
ics are defined by (CV), (BPS1) and (BPS2), has an invariant distribution
�̃�(𝜽 , p) = 𝜋(𝜽)𝜋p(p) where 𝜋p is the density of a 𝑑-dimensional standard
normal distribution.

Proof As our presentation of PDMPs has focussed on discrete transitions
at events, we will prove the result for _r = 0 only. The extension to _r > 0
is straightforward, as the additional refresh rates trivially keep �̃� invariant.

As shown above, a reflection does not change the length of a vector. As
for the proposed invariant distribution, 𝜋p(p) depends on p only through its
length, we have 𝜋p(p) = 𝜋p(Rg(p)), for any direction of reflection g. Thus
a reflection event does not change the value of �̃�. This means we can use the
same argument as at the start of the proofs of Theorem 5.1 and Theorem
5.2 to get that the left-hand side of (5.4) is proportional to

−p · ∇𝜽 log 𝜋(𝜽) + _BPS(𝜽 ,Rg(p)) − _BPS(𝜽 , p), (5.13)

where to simplify notation we have used g = ∇𝜽 log 𝜋(𝜽). The middle term
is the rate of transitioning to state (𝜽 , p) and uses, as shown above, that
reflections are involutions, so it is the state (𝜽 ,Rg(p)) that will transition to
(𝜽 , p) at a reflection event. Substituting in the form of _BPS, and using the
definition of g, we have

_BPS(𝜽 ,Rg(p)) − _BPS(𝜽 , p) = max{0,Rg(p) · g} −max{0, p · g}.

Now

Rg(p) ·g = (p−2(p · ĝ) ĝ) ·g = p ·g−2(p · ĝ) (ĝ ·g) = p ·g−2(p ·g) (ĝ · ĝ),

5.3 Continuous-time MCMC via PDMPs 147

where the last equality follows as g is proportional to ĝ. As ĝ is a unit vector,
we have Rg(p) · g = −p · g. Substituting gives

_BPS(𝜽 ,Rg(p)) − _BPS(𝜽 , p) = max{0,−p · g} −max{0, p · g} = −p · g.

By definition of g this is just p · ∇𝜽 log 𝜋(𝜽). Substituting this into (5.13)
we see that the left-hand side of (5.4) is 0 as required.

□

Example: Sampling from a Gaussian Target
To gain an initial understanding of these algorithms in practice, how they
differ from each other and how they compare to HMC, we will consider
their implementation for sampling from a Gaussian distribution. This is
an example where all methods can be implemented exactly and enables a
simple comparison of the dynamics of the different samplers.

To simplify notation we will assume our target Gaussian distribution has
a mean zero. This can be assumed without loss of generality in terms of the
behaviour of the samplers, as we can re-centre any Gaussian distribution
with non-zero mean and this would not change the samplers’ dynamics. A
mean-zero Gaussian distribution is commonly parameterised by its covari-
ance matrix, 𝚺 say, but in terms of its density function, it is easier to use
the precision matrix, which is the inverse of the covariance matrix. We will
denote the precision matrix by Q = 𝚺−1. We assume that 𝚺, and hence Q,
is positive-definite. Then up to an additive constant, we have

log 𝜋(𝜽) = −1
2
𝜽⊤Q𝜽 .

The rates of the PDMP samplers depend on 𝜋 through −∇𝜽 log 𝜋(𝜽), which
for the Gaussian target is Q𝜽 .

Before showing the output from the different PDMP samplers for this
model, we will describe an approach to simulating the PDMPs. Each of
the three PDMPs introduced in the previous section can be viewed as
having multiple types of event, with each event having a deterministic
transition. For the Zig–Zag Sampler, we have one event associated with each
component of 𝜽 , and that flips the associated component of the velocity. For
the Bouncy Particle Sampler, and the Coordinate Sampler, there are two
events, one of which is a refresh of the velocity. Our approach to simulating
these PDMPs is to use the idea of superposition, that is we will simulate
the time for each of the possible events, find which occurs first, and then
this type of event with its associated time is the next event for our PDMP.

As described in Section 5.2.2, to simulate times of events we need,

148 Continuous-Time MCMC

for each type of event, to calculate the rate of the time until the next event,
given the current state. We will describe how to calculate this for the bounce
event of the Bouncy Particle Sampler, and for a flip event in the Zig–Zag
Sampler. Simulating the refresh events is trivial, and simulating the events
of the Coordinate Sampler follows by similar arguments.

Let the current state of our PDMP be z = (𝜽 , p), and let _̃z(𝑡) be the rate
at which an event occurs in terms of the future time 𝑡. We will first consider
the bounce event of the Bouncy Particle Sampler. Let the current time be 𝑠,
so z𝑠 = z, then

_̃z(𝑡) = max{0, p𝑠+𝑡 · (−∇𝜽 log 𝜋(𝜽 𝑡+𝑠)} = max{0, p⊤𝑠+𝑡Q𝜽 𝑠+𝑡 }
= max{0, p⊤Q(𝜽 + 𝑡p)} = max{0, p⊤Q𝜽 + 𝑡p⊤Qp}.

Here we have used the definition of _̃z(𝑡), substituted in log 𝜋(𝜽 𝑡+𝑠) for our
target and then used the fact that up until the next event, p𝑠+𝑡 = p𝑠 = p and
𝜽 𝑠+𝑡 = 𝜽 𝑠 + 𝑡p𝑠 = 𝜽 + 𝑡p.

We are viewing _̃z(𝑡) as a function of the further time until the event, 𝑡.
We can see that _̃ is the maximum of zero and a linear function of 𝑡, and
defining 𝑎 = p⊤Q𝜽 and 𝑏 = p⊤Qp, the linear function is equal to 𝑎 + 𝑏𝑡.
Furthermore, as Q is positive-definite we have 𝑏 > 0. For this rate, we can
simulate event times directly using Algorithm 7. To do this, we need to
solve

∫ 𝑡

0 _̃z(𝑢)d𝑢 = 𝑤. There are two cases for the integral. First, if 𝑎 > 0,
then _̃z(𝑢) = 𝑎 + 𝑏𝑢 for all 𝑢 > 0, so∫ 𝑡

0
_̃z(𝑢)d𝑢 =

∫ 𝑡

0
(𝑎 + 𝑏𝑢)d𝑢 = 𝑎𝑡 + 𝑏𝑡

2

2
,

and this is equal to 𝑤 > 0 if 𝑡 = −𝑎/𝑏 +
√
𝑎2 + 2𝑤𝑏/𝑏. If 𝑎 < 0 then 𝑎 + 𝑏𝑡

is only positive for 𝑡 > |𝑎 |/𝑏, thus for such 𝑡∫ 𝑡

0
_̃z(𝑢)d𝑢 =

∫ 𝑡

|𝑎 |/𝑏
(𝑎 + 𝑏𝑢)d𝑢 =

∫ 𝑡−|𝑎 |/𝑏

0
𝑏𝑢′2d𝑢′ =

𝑏(𝑡 − |𝑎 |/𝑏)2
2

.

This is equal to 𝑤 > 0 when 𝑡 = |𝑎 |/𝑏 +
√︁

2𝑤/𝑏.
The resulting algorithm for one iteration of the Bouncy Particle Sampler

is given in Algorithm 9. The algorithm simulates the time of a refresh event
and a bounce event. It sets the time of the next event to be the smaller of
these two times, and updates the position of the state. Then, depending on
which type of event occurred first, it updates the velocity. For a refresh
event, this involves simulating from the sampler’s invariant distribution for
the velocity, which depending on the type of Bouncy Particle Sampler can
be either a standard Gaussian distribution or the uniform distribution on

5.3 Continuous-time MCMC via PDMPs 149

the unit hyper-sphere. For a bounce event, the velocity is reflected in the
hyperplane perpendicular to −∇ log 𝜋(𝜽) at the current position 𝜽 ′, which
for our model is Q𝜽 ′.

Algorithm 9: Bouncy Particle Sampler: Gaussian Target
Input: Precision Matrix, Q, current state (𝜽 , p), refresh rate _r > 0
Calculate 𝑎 = p⊤Q𝜽 and 𝑏 = p⊤Qp.
Simulate 𝑤1 and 𝑤2, independent realisations of a standard
exponential random variable.

Calculate time until a refresh event 𝜏1 = 𝑤1/_r.
Calculate time until a bounce event: if 𝑎 < 0 𝜏2 =

√︁
2𝑤2/𝑏 + |𝑎 |/𝑏,

otherwise 𝜏2 = −𝑎/𝑏 +
√︁
𝑎2 + 2𝑤2𝑏/𝑏.

Calculate event time 𝑡 = min{𝜏1, 𝜏2}.
Update position 𝜽 ′ = 𝜽 = 𝑡p.
Decided on event type and update velocity:
if 𝜏1 < 𝜏2 then

Refresh event. Simulate p′ from its invariant distribution.
else

Bounce event. Set

p′ = p − 2(p⊤Q𝜽 ′) Q𝜽 ′√︁
𝜽 ′⊤Q⊤Q𝜽 ′

.

end
Output: Time to next event 𝑡, and new state (𝜽 ′, p′)

A similar derivation is possible for the Zig–Zag Sampler. The only
difference is that the flip rate of the 𝑖th component of 𝑝𝑖 is

max{0,−𝑝𝑖 (∇𝜽 log 𝜋(𝜽))𝑖} = max{0, 𝑝𝑖 (Q𝜽)𝑖},

where we write, for example, (Q𝜽)𝑖 to denote the 𝑖th component of Q𝜽 .
Thus, the associated rate as a function of time until this event, if the current
state of z = (𝜽 , p), is

_̃
(𝑖)
z (𝑡) = max{0, 𝑝𝑖 [Q(𝜽 + 𝑡p)]𝑖} = max{0, 𝑝𝑖 (Q𝜽)𝑖 + 𝑡 𝑝𝑖 (Qp)𝑖}.

This again is the maximum of 0 and a linear function of 𝑡 and can be
simulated as described above. As above, we can set _̃ (𝑖)z (𝑡) = max{0, 𝑎+𝑏𝑡}
but now with 𝑎 = 𝑝𝑖 (Q𝜽)𝑖 and 𝑏 = 𝑝𝑖 (Qp)𝑖. The only difference is that in
this case, 𝑏 can be negative. If 𝑏 < 0 and 𝑎 < 0, then this event can never

150 Continuous-Time MCMC

happen. If 𝑎 > 0, then an event can happen for 𝑡 < 𝑎/|𝑏 |. In this case

𝑤 =

∫ 𝑡

0
(𝑎 + 𝑏𝑢)d𝑢 ⇒ 𝑤 = 𝑎𝑡 + 𝑏𝑡

2

2
.

This has a solution for 𝑡 > 0 only if 𝑤 ≤ 𝑎2/(2|𝑏 |), in which case 𝑡 =
−𝑎/𝑏 +

√
𝑎2 + 2𝑤𝑏/𝑏. If 𝑤 > 𝑎2/(2|𝑏 |) then this event does not happen.

If an event cannot or does not happen, then algorithmically we set the
associated event time to infinity.

An algorithm for one iteration of the Zig–Zag Sampler is given in Algo-
rithm 10. It has a similar form as the Bouncy Particle Sampler. We calculate
the event time for each type of event – though due to the four possible cases
we have not given the formulae for calculating the event times within the
algorithm. We then set the event time to the smallest of these times and
update the position. Finally, the event type is calculated and we apply the
appropriate transition to the velocity, remembering that 𝐹𝑖 (p) flips the 𝑖th
component of the vector p.

Algorithm 10: Zig–Zag Sampler: Gaussian Target
Input: Precision Matrix, Q, current state (𝜽 , p), refresh rate _r > 0
for 𝑖 = 1, . . . , 𝑑 do

Calculate 𝑎𝑖 = 𝑝𝑖 (Q𝜽)𝑖 and 𝑏𝑖 = 𝑝𝑖 (Qp)𝑖.
Simulate 𝑤𝑖, a realisation of a standard exponential random
variable.

Calculate 𝜏𝑖, the event time for a flip of the 𝑖th component of p.
end
Calculate event time 𝑡 = min𝑖=1,...,𝑑{𝜏𝑖}.
Update position 𝜽 ′ = 𝜽 = 𝑡p.
Decide on event type, 𝑖∗ = arg min{𝜏𝑖}.
Update velocity p′ = 𝐹𝑖∗ (p).
Output: Time to next event 𝑡, and new state (𝜽 ′, p′)

To gain some intuition of the properties of these PDMP algorithms,
we will first look qualitatively at the output of running the algorithms for a
bivariate Gaussian – as we can plot the realisations from the paths generated
by the position component of the PDMPs. First, we look at the importance
of the refresh rate with the Bouncy Particle Sampler. To most clearly see
the potential issues for this sampler, it is helpful to observe it sampling from
a target with uncorrelated, equal variance components. See Figure 5.2 for
output from the Bouncy Particle Sampler for different refresh rates.

5.3 Continuous-time MCMC via PDMPs 151

2 0 2
θ (1)

3

2

1

0

1

2

3
θ

(2
)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

Figure 5.2 Plots of realisations of the trajectory or path of the
Bouncy Particle Sampler when sampling from a standard (i.e.
uncorrelated, equal variance) bivariate Gaussian distribution.
Trajectories shown for no refresh events (top left), _r = 0.1 (top
right), _r = 1 (bottom left) and _r = 10 (top right). The heat map
shows the log posterior density of the target in each case.

The top-left plot shows the trajectory if we do not use any refresh events.
We can clearly see evidence of the sampler being reducible – as the sampler
does not enter a large region around the mode. Bouchard-Côté et al. (2018)
prove that the Bouncy Particle Sampler is in fact reducible for this example.
Furthermore, they show that this is avoided if we use any non-zero refresh
rate, and if we do so the sampler will converge to the target distribution.
However, we get very different behaviour for different values of the refresh
rate, as shown in the remaining plots of Figure 5.2. A small rate produces a

152 Continuous-Time MCMC

sampler, that whilst irreducible, has poor mixing properties (see top-right
plot). The sampler has long periods between refresh events, and for each of
these periods, there are regions of the state space that the sampler cannot
reach. Too large a refresh rate means that the sampler shows random-walk
behaviour, which can also adversely affect its mixing (see bottom-right
plot). Tuning of the refresh rate to a good intermediate value can result
in a sampler that mixes well and avoids this random-walk behaviour (see
bottom-left plot). We will return to how to tune the refresh rate later. Finally,
whilst the Coordinate Sampler also has refresh events, it does not suffer from
the same problems as the Bouncy Particle Sampler, and will be irreducible
even if _r = 0.

We now compare the outputs of the three different PDMP samplers,
with the Bouncy Particle Sampler using an appropriately tuned refresh rate,
_r = 1. These are shown in Figure 5.3 together with the output from HMC.
At this stage, there are two main points we wish to make. First, one can
see the qualitative similarities and differences between the different PDMP
samplers. Each sampler explores 𝜽 space with straight-line trajectories, and
they all have the property that they continue in the same direction whilst
moving to areas of higher probability density – though for the Zig–Zag
Sampler, this has to be interpreted separately for each axis component.
However, the trajectories themselves are very different due to the different
possible velocities and transitions. The Coordinate Sampler explores the
posterior by exploring a single component of 𝜽 at a time. This has some
similarities with a Gibbs sampler (see Section 2.1.1), and intuition from
results on mixing of Gibbs samplers suggest that this sampler will perform
best when there is no strong correlation between the components of 𝜽 .
The Zig–Zag Sampler has trajectories consisting of diagonal lines, and the
transitions that flip a single component of the velocity lead to trajectories
that look like zig-zags, which gives the sampler its name. Finally, the
Bouncy Particle Sampler can have trajectories that explore the space in any
direction.

Second, it is interesting to compare PDMP samplers with HMC (see
bottom-right plot). For this model, we can solve the Hamiltonian dynamics
for each proposal of the HMC algorithm exactly, and thus we always will ac-
cept a proposal. The trajectories of the Hamiltonian dynamics are elliptical,
as compared to the straight-line segments of our PDMP samplers. However,
the main difference is that the output of a PDMP sampler is a continuous
path, whilst for HMC, we obtain a set of points. For non-Gaussian target
distributions, the HMC sampler will not always accept the proposal which
can lead to worse mixing. In such cases, whilst we cannot directly sample

5.3 Continuous-time MCMC via PDMPs 153

2 0 2
θ (1)

3

2

1

0

1

2

3
θ

(2
)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

2 0 2
θ (1)

3

2

1

0

1

2

3

θ
(2

)

Figure 5.3 Comparison of three PDMP algorithms and HMC for
sampling from a bivariate Gaussian with unit marginal variances
and correlation of 0.5. Realisations of the trajectories (blue lines)
of the Coordinate Sampler (top left), the Zig–Zag Sampler (top
right) and the Bouncy Particle Sampler with _r = 1 (bottom left).
Trajectories of Hamiltonian dynamics (line) and the sampled
points (dots) from HMC (bottom right). The heat map shows the
log posterior density of the target in each case.

the trajectories of the PDMP samplers, this only impacts the computational
cost of simulation, rather than the output or the mixing properties of the
sampler.

154 Continuous-Time MCMC

5.3.2 Use of PDMP Output
Simulating a PDMP, as described in Section 5.2.2, produces a skeleton of
the sample path of the process. Assume that we have simulated the process
up to some time 𝑇 . We will denote this skeleton by the set {𝜏𝑖, (𝜽 𝜏𝑖 , p𝜏𝑖)}𝑛+1𝑘=0
that gives the initial state of the process, with 𝜏0 = 0, the time and state
after each event, for 𝑘 = 1, . . . , 𝑛, and the final state of the process at time
𝜏𝑛+1 = 𝑇 . How do we use this output to approximate the target distribution?

For any Monte Carlo method, an approximation to the target distribu-
tion, 𝜋(𝜽) comes from the ability to estimate the expectation for arbitrary
functions of 𝜽 with respect to 𝜋. Thus consider estimating E𝜋 [ℎ(𝜽)] for
some function ℎ for which this expectation exists. First, we describe how
we do not estimate this expectation! We cannot just use the sample average
of ℎ(·) at the skeleton points for 𝜽 , even after allowing some burn-in. In
general, the skeleton points will not be sampled from 𝜋 at stationarity, as
they will be biased towards values where there is a large average rate of an
event occurring.

Instead, we need to estimate the expectation with respect to the continuous-
time sample path, after allowing for a suitable burn-in. There are two ways
of doing this. Assume we choose the burn-in to be some time 𝑆. Then one
approach is to calculate the average value of the integral of ℎ(𝜽 𝑡) for our
sample path for 𝑆 < 𝑡 ≤ 𝑇 . This can be calculated from the skeleton as
follows. First, we work out the value of 𝜽𝑆 for our sample path. This is
possible by finding 𝑙 such that 𝜏𝑙 ≤ 𝑆 < 𝜏𝑙+1, and using linear interpolation

𝜽𝑆 =
𝜏𝑙+1 − 𝑆
𝜏𝑙+1 − 𝜏𝑙

𝜽 𝑙 +
𝑆 − 𝜏𝑙
𝜏𝑙+1 − 𝜏𝑙

𝜽 𝑙 .

Then our estimator can be calculated as

Ê𝜋 [ℎ(𝜽)] =
1

𝑇 − 𝑆

(∫ 𝜏𝑙+1

𝑆

ℎ

(
𝜽𝑆 + (𝑡 − 𝑆)

𝜽 𝜏𝑙+1 − 𝜽𝑆
𝜏𝑙+1 − 𝑆

)
d𝑡

+
𝐾∑︁

𝑘=𝑙+1

∫ 𝜏𝑘+1

𝜏𝑘

ℎ

(
𝜽 𝜏𝑘 + (𝑡 − 𝜏𝑘)

𝜽 𝜏𝑘+1 − 𝜽 𝜏𝑘
𝜏𝑘+1 − 𝜏𝑘

)
d𝑡

)
This estimator is only practical if we can analytically calculate the integrals
along the linear segments of the path. A more general, and arguably simpler
approach is to evaluate 𝜽 𝑡 at 𝑁 evenly spaced points between 𝑆 and 𝑇 and
then use standard Monte Carlo averages with respect to this set of values.
That is, let 𝛿 = (𝑇 − 𝑆)/𝑁 and using linear interpolation as above evaluate

5.3 Continuous-time MCMC via PDMPs 155

𝜽𝑆+ 𝑗 𝛿 for 𝑗 = 1, . . . , 𝑁 . Then our estimator of E𝜋 [ℎ(𝜽)] would now be

Ê𝜋 [ℎ(𝜽)] =
1
𝑁

𝑁∑︁
𝑗=1

ℎ(𝜽𝑆+ 𝑗 𝛿).

One advantage of this approach is the final output is similar to that for
standard MCMC, which eases comparison and enables us to use methods for
assessing the accuracy of standard MCMC estimators such as the integrated
auto-correlation time and effective sample size (see Section 1.3.2).

5.3.3 Comparison of Samplers
Bierkens et al. (2022) examines the mixing properties of the Bouncy Particle
Sampler and the Zig–Zag Sampler in the limit as the dimension of the
space, 𝑑 → ∞, for the special case where the posterior of interest is a 𝑑-
dimensional standard normal distribution. In related work, Bierkens et al.
(2023a) investigates finite-dimensional normal targets where some principal
components have a much smaller length scale than others. We summarise
the findings of these two papers and provide some intuition for them.

To compare the samplers, we need to consider both their computational
cost for simulating a trajectory of fixed duration, and how the mixing of
the process depends on time. First, consider the computational cost, and
the intensity of bounce events on a 𝑑-dimensional standard normal target,
so that at stationarity ∇ log 𝜋(𝜽) = −𝜽 . The momentum for the Zig–Zag
Sampler is pzz ∈ {−1, +1}𝑑 . For the Bouncy Particle Sampler, we describe
the case where p is sampled from U𝑑 , the uniform distribution on the unit
hypersphere. If, instead, pBPS ∼ N(0, 1

𝑑
I𝑑), for large 𝑑, ∥pBPS∥2 ≈ 1 and the

analysis is the same as for the setting where pBPS ∼ U𝑑 . Speeding up time
by a factor of

√
𝑑 leads to the version of the BPS that samples p ∼ N(0, I𝑑),

but makes no difference to the overall efficiency in terms of mixing per unit
of computational effort.

For either sampler, let 𝑝𝑖 be the 𝑖th component of its momentum. For the
Bouncy Particle Sampler, the intensity is _BPS(𝜽 , p) = max{0,∑𝑑

𝑖=1 𝑝𝑖\𝑖} =
𝑂 (1), since each term in the sum has the same expectation of 0 and a vari-
ance of 𝑂 (1/𝑑). Thus, there are 𝑂 (1) events per unit of time. In contrast,
for the Zig–Zag Sampler, the intensity is _zz(𝜽 , p) =

∑𝑑
𝑖=1 max{0, 𝑝𝑖\𝑖} =

𝑂 (𝑑), since each term in the sum has the same positive expectation. Hence,
there are 𝑂 (𝑑) events per unit time. In general, for each sampler, the com-
putational cost of performing a bounce is 𝑂 (𝑑): for the Bouncy Particle
Sampler, this is the order of the cost of calculating the gradient required for

156 Continuous-Time MCMC

both the event rate and for calculating the new velocity at a bounce event;
for Zig-Zag, after a bounce event we will need to update the rates for each
of the 𝑑 possible events (though see Section 5.4.2 for situations where this
can be reduced). Thus the total cost per unit time is 𝑂 (𝑑) for the Bouncy
Particle Sampler and 𝑂

(
𝑑2) for the Zig–Zag Sampler.

The above costing generalises to any reasonably well-behaved target.
However, because it only updates a component at a time, in cases where
components have a sparse conditional dependence graph the cost of per-
forming a Zig–Zag bounce can be reduced to 𝑂 (1) (see Section 5.4.2).

Now we turn to the mixing properties. In this special case of an isotropic
target, the state of the Markov process can be encapsulated by the radial
component, ∥𝜽 ∥, and the angle between the radius and the momentum,
which is proportional to 𝜽 · p.

For Bouncy Particle Samplers, the radial component mixes in 𝑂 (𝑑)
time, whereas the angular component mixes in 𝑂 (1) time. To see why, for
simplicity, we ignore any refresh events. Consider a single straight-line path
between bounces, which we will call a segment: because the contours on a
N(0, I𝑑) target are spherical, log 𝜋 increases monotonically to a maximum
along the segment and then decreases monotonically until the next bounce.
Let 𝐸 be the size of the drop in log 𝜋 from its maximum until the next
bounce. Start a clock at a time when log 𝜋 is at a maximum and let 𝑡 be the
time since the clock started. Since there are no refresh events, if there has
been no bounce since the clock started, the size of the total drop in log 𝜋 by
time 𝑡 is

𝐷 (𝑡) = −
∫ 𝑡

0
p · ∇ log 𝜋(𝜽 𝑠)d𝑠.

Now, for 𝑡 > 0, 𝜋(𝜽 𝑡) decreases until a bounce occurs, so

𝐸 > 𝐷 (𝑡) ⇔ "No bounce by time 𝑡."

However, while log 𝜋 is decreasing, bounce events follow an inhomogeneous
Poisson process with a rate at time 𝑠 of _(𝑠) = −p · ∇ log 𝜋(𝜽 𝑠), so the
probability that there has been no event by time 𝑡 is

exp
[
−

∫ 𝑡

0
_(𝑠)d𝑠

]
= exp[−𝐷 (𝑡)] .

Thus P (𝐸 > 𝐷 (𝑡)) = exp[−𝐷 (𝑡)], so 𝐸 has an exponential distribution
with rate parameter 1.

Over the𝑂 (1) time between bounces, the angle 𝜽 ·p moves monotonically
from its most negative extent (just after a bounce) to its most positive extent

5.3 Continuous-time MCMC via PDMPs 157

(just before the next bounce). Thus, 𝜽 · p mixes in 𝑂 (1) time. However,

log 𝜋(𝜽) = constant − 1
2
∥𝜽 ∥2 = constant − 1

2
𝜒2
𝑑

at stationarity, and a 𝜒2
𝑑

random variable has a standard deviation of
√

2𝑑.
So, to mix, the log 𝜋 process needs to move by 𝑂 (𝑑1/2), yet it only moves
by 𝑂 (1) in 𝑂 (1) time. In an analogous manner to the limit for the random
walk Metropolis in Section 2.1.3, speeding up time by a factor of 𝑑 leads
to a limiting diffusion for ∥𝜽 ∥; thus ∥𝜽 ∥ mixes in 𝑂 (𝑑) time.

By maximising the speed of the limiting diffusion for ∥𝜽 ∥, the same
analysis advises on tuning the refresh rate for the Bouncy Particle Sampler,
_r. This suggests choosing _r so that the ratio of refresh to bounce events
is ≈ 0.78.

In the case of an isotropic normal target, the Zig–Zag Sampler simplifies
to 𝑑 independent one-dimensional instances of Gustafson’s algorithm (Sec-
tion 4.3). Thus, each individual component mixes in 𝑂 (1) time, so both
∥𝜽 ∥ and 𝜽 · p mix in 𝑂 (1) time.

Multiplying the mixing times by the computational costs, we can define
mixing costs. For Bouncy Particle Samplers, these are𝑂 (𝑑) for the angular
component and 𝑂 (𝑑2) for the radial component, whereas the costs for
the Zig–Zag Sampler are 𝑂 (𝑑2) for both components. If one follows the
adage that a sampler is only as good as its worst-mixing component, this
suggests that, at least for well-behaved targets, both algorithms have a
similar efficiency.

What about the mixing of the Bouncy Particle Sampler for other functions
of the state? Bierkens et al. (2022) show that it has the same 𝑂 (𝑑2) rate for
marginal components of the state – i.e. if we are interested in \𝑖 for some
𝑖. This compares to results in Deligiannidis et al. (2021) which suggest that
mixing costs for marginal components are 𝑂 (𝑑). The difference in results
comes from different choices of how the refresh rate depends on 𝑑. Bierkens
et al. (2022) have a constant rate, whereas Deligiannidis et al. (2021) assume
that the rate decays like 𝑂 (𝑑−1/2). The latter choice improves mixing for
marginal components but worsens the mixing of the radial component, so
that as 𝑑 →∞, the limiting process for the radial component is degenerate.

To see this in practice, we compared the performance of Zig–Zag and
the Bouncy Particle Sampler at sampling from a Gaussian with 𝑑 = 20 and
𝑑 = 1000. Results are shown in Figure 5.4, where we scale the number
of events simulated to be proportional to the dimension, 𝑑. The theory
states that for this scaling we would expect similar mixing for the Zig–Zag
sampler over the length of the simulation. We observe this qualitatively for

158 Continuous-Time MCMC

0 1
Proportion of run

3

4

5

6
‖θ
‖

0 1
Proportion of run

3

4

5

6

‖θ
‖

0 1
Proportion of run

3

4

5

6

‖θ
‖

0 1
Proportion of run

2

0

2

θ 1

0 1
Proportion of run

2

0

2

θ 1

0 1
Proportion of run

2

0

2

θ 1

0 1
Proportion of run

30

31

32

33

‖θ
‖

0 1
Proportion of run

30

31

32

33

‖θ
‖

0 1
Proportion of run

30

31

32

33

‖θ
‖

0 1
Proportion of run

2

0

2

θ 1

0 1
Proportion of run

2

0

2

θ 1

0 1
Proportion of run

2

0

2

θ 1

Figure 5.4 Trace plots for Zig–Zag (left-hand column), Bouncy
Particle Sampler with _r = 1.5

√︁
𝑑/20 (middle column) and

Bouncy Particle Sampler with _r = 1.5 (right-hand column) for a
Gaussian target with 𝑑 = 20 (top two rows) and 𝑑 = 1000 (bottom
two rows). In each case we show trace plots for the radial
component of the state, ∥𝜽 ∥, and the first component of the state,
\1. We ran all samplers for 20𝑑 bounce events, and scaled the time
axis by the proportion of the resulting simulation time.

5.4 Efficient Simulation of PDMP Samplers 159

both ∥𝜽 ∥ and \1. The theory also suggests similar qualitative behaviour
for the Bouncy Particle Sampler with a refresh rate that scales with

√
𝑑,

so that the proportion of refresh events is roughly similar for different 𝑑;
we observe this in the middle column of the plot. By comparison, if we
use a fixed refresh rate, as in Deligiannidis et al. (2021), then we observe
better mixing for \1 but worse mixing for ∥𝜽 ∥ as we increase 𝑑 – see the
right-hand column of Figure 5.4.

One important consequence of the theoretical results, and that is seen
in the results in Figure 5.4, is that care is needed when we assess mixing
and convergence of, in particular, the Bouncy Particle Sampler – as we
can get substantially different measures of mixing, such as auto-correlation
time, depending on which function of the state we consider. Observing
a fast mixing chain for one component may mask that other functions of
the state are mixing very slowly (see Section 6.2.4 for more discussion on
summarising convergence in multivariate settings and measures that can
give differing importance to different coordinates).

Bierkens et al. (2023a) investigate fixed, finite-dimensional normal tar-
gets where between 1 and 𝑑 − 1 principal components have a length scale
of 𝜖 , while the remainder have a length scale of 1. Both algorithms have
𝑂 (𝜖−1) events per unit time because the momentum is𝑂 (1) but some length
scales are 𝑂 (𝜖). The Bouncy Particle Sampler mixes in 𝑂 (1) time; how-
ever, the alignment of the Zig–Zag Sampler is crucial to its mixing time: if
the principal axes of the target are aligned with the 𝑑 Zig–Zag momentum
components then it also mixes in 𝑂 (1) time, but in almost all other scenar-
ios its mixing time is 𝑂 (𝜖−1). Preconditioning is usually advised for any
MCMC algorithm; this analysis highlights that the need for preconditioning
the Zig–Zag Sampler is even more marked than it is for Bouncy Particle
Samplers.

5.4 Efficient Simulation of PDMP Samplers
We now consider various approaches for simulating the PDMP samplers.
As a running example that we will use to help explain some of the ideas,
we will consider the logistic regression model with a Gaussian prior, which
was introduced in Section 1.2.1.

5.4.1 Simulating PDMPs
When sampling from the Gaussian target, the rates that determine the time
until the next event were linear and thus we could simulate the event times

160 Continuous-Time MCMC

of the PDMP exactly. What happens for more complicated targets where
this is not possible? Here we describe three possible methods for simulating
these events.

The most common approaches for simulating events of a PDMP are based
on the idea of Poisson thinning (see Section 5.2.2). Remember this involves
upper-bounding the event rate, simulating events with this bounding rate,
and then accepting the simulated events with the ratio of the true rate to the
bounding rate. The challenge with Poisson thinning is finding good upper
bounds that are simple enough that we can simulate events analytically,
and, ideally, close to the true rate, as the computational efficiency of Poisson
thinning depends on how close the bounding rate is to the true rate. The first
two methods we describe are based on this idea but differ in the assumptions
they make on the target and how the bounding rates are constructed.

The first approach comes from Bierkens et al. (2019b) and assumes that
the Hessian of the minus log-target is bounded. To simplify the notation,
define the vector U(𝜽) = −∇ log 𝜋(𝜽), so U = (𝑈1(𝜽), . . . ,𝑈𝑑 (𝜽)) with

𝑈 𝑗 (𝜽) = −
𝜕 log 𝜋(𝜽)

𝜕\ 𝑗
.

Now the Hessian of − log 𝜋(𝜽) is a 𝑑 × 𝑑 matrix H(𝜽) defined as

H(𝜽) =
(
∇𝑈1(𝜽) · · · ∇𝑈𝑑 (𝜽)

)
.

Then we assume that there is some matrix J such that for any vector, w, and
any 𝜽 ,

w⊤H(𝜽)w ≤ w⊤Jw.

This holds for Gaussian target distributions, as H(𝜽) = H is a constant. More
importantly, it holds for targets which are heavier-tailed than Gaussian,
including the posterior distribution for logistic regression or many versions
of robust regression if we have e.g. Gaussian priors on the parameters of
the model.

Now, as introduced before, consider a rate for the next event, or the next
specific type of event, in a PDMP, _̃z(𝑡), in terms of the further time until
the event 𝑡. Assume that

_̃z(𝑡) = max{0,w · U(𝜽 + p𝑡)},

where U = −∇ log 𝜋 as defined above, the current state is (𝜽 , p), and w is
some vector that depends on the sampler. For the Bouncy Particle Sampler
or the Coordinate Sampler, if we are considering time until the next non-
refresh event, then w = p, whereas for the Zig–Zag Sampler if we are

5.4 Efficient Simulation of PDMP Samplers 161

considering the next flip of component 𝑗 then w will be either the unit
vector with 1 or −1 in the 𝑗 the component and zero elsewhere.

Now consider the term w · U(𝜽 + p𝑡). This can be rewritten as

w · U(𝜽 + p𝑡) = w · U(𝜽) +
𝑑∑︁
𝑖=1

𝑤𝑖

∫ 𝑡

0

d𝑈𝑖 (𝜽 + p𝑠)
d𝑠

d𝑠

= w · U(𝜽) +
𝑑∑︁
𝑖=1

𝑤𝑖

∫ 𝑡

0
p · ∇𝑈𝑖 (𝜽 + p𝑠)d𝑠

= w · U(𝜽) +
∫ 𝑡

0
w⊤H(𝜽 + p𝑠)pd𝑠.

The first equality comes from writing the value of a function at time 𝑡 as its
value at time 0 plus the integral of its derivative from time 0 to time 𝑡. We
then use the chain rule to get the derivative of𝑈𝑖 (𝜽 + p𝑠) with respect to 𝑠,
and finally the definition of the Hessian matrix.

Now, by Cauchy–Schwarz for vectors, w⊤Hp ≤ ∥w∥∥Hp∥, where ∥w∥ =
(∑𝑑

𝑖=1 𝑤𝑖)1/2 is the 𝐿2 norm of the vector w. This, together with our assump-
tion on the bound of the Hessian, gives

w⊤H(𝜽 + p𝑠)p ≤ ∥w∥∥H(𝜽 + p𝑠)p∥ ≤ ∥w∥∥Jp∥

which is a constant. Thus we get the linear bound

w · U(𝜽 + p𝑡) ≤ w · U(𝜽) + ∥w∥∥Jp∥𝑡,

or equivalently the piecewise linear bound on the rate

_̃z(𝑡) ≤ max{0,w · U(𝜽) + ∥w∥∥Jp∥𝑡}.

We can simulate events from this upper-bounding rate analytically, in an
equivalent way to which we simulate the events for the Gaussian target. If
w ≠ p, we can use instead w⊤Hp ≤ ∥p∥∥Hw∥ to get the alternative bound

_̃z(𝑡) ≤ max{0,w · U(𝜽) + ∥p∥∥Jw∥𝑡}.

Our second approach (Sutton and Fearnhead, 2023) is based on a different
assumption for the target, namely that we can decompose −∇ log 𝜋(𝜽 +p𝑡),
as a function of 𝑡 for any 𝜽 and p into the sum of convex and concave
functions, and assume the concave function is differentiable everywhere. A
function 𝑓∪(𝑡) for 𝑡 ≥ 0 is a convex function if for any 0 ≤ 𝑟 < 𝑠 < 𝑡, we
have

𝑓∪(𝑠) ≤
𝑡 − 𝑠
𝑡 − 𝑟 𝑓∪(𝑟) +

𝑠 − 𝑟
𝑡 − 𝑟 𝑓∪(𝑡),

while a function 𝑓∩(𝑡) for 𝑡 ≥ 0 is a concave function if − 𝑓∩(𝑡) is convex.

162 Continuous-Time MCMC

That is if we pick any two points on the function and join them by a straight
line, then the function lies below the line if it is convex, and above the line
if it is concave. See Figure 5.5 for an example.

We will assume that we can decompose the rate until the next event as

_̃z(𝑡) = max{0, 𝑓∪(𝑡) + 𝑓∩(𝑡)},

i.e. in terms of a single convex and single concave function – though the
ideas below apply trivially if our decomposition involves multiple concave
and convex functions. (In fact, the sum of convex functions is convex, and
the sum of concave functions is concave, so we can immediately simplify
the decomposition to the case we are considering.) Our starting point is the
bound

_̃z(𝑡) = max{0, 𝑓∪(𝑡) + 𝑓∩(𝑡)} ≤ max{0, 𝑓∪(𝑡)} +max{0, 𝑓∩(𝑡)}. (5.14)

Sutton and Fearnhead (2023) then use the fact that we can bound 𝑓∪(𝑡)
and 𝑓∩(𝑡) by piecewise linear functions just by evaluating the functions
at a set of grid points. Once we have these piecewise linear bounds, they
immediately give us a piecewise linear bound on _̃z(𝑡) by substituting them
into (5.14).

How do we get piecewise linear bounds on 𝑓∪(𝑡) and 𝑓∩(𝑡)? It is simplest
to see this through a picture – see Figure 5.5. For the convex function,
the bound comes immediately from the definition: if we evaluate 𝑓∪(𝑡) at
𝑡 = 0 and 𝑡 = 𝑡1, then the straight line that joins these points gives an upper
bound on [0, 𝑡1]. For a concave function, we need to evaluate 𝑓∩(𝑡) and its
derivative at 𝑡 = 0 and 𝑡 = 𝑡1. We then construct the tangents to 𝑓∩(𝑡) at
𝑡 = 0 and 𝑡 = 𝑡1, and the function lies below both tangents.

The above approach gives upper bounds on some interval [0, 𝑡1], and
we can proceed by using these upper bounds to simulate events, if any, on
[0, 𝑡1]. If there are no events, we then choose some 𝑡2 > 𝑡1 and calculate
an upper bound on [𝑡1, 𝑡2] and repeat the process. In practice, Sutton and
Fearnhead (2023) suggest choosing 𝑡1, 𝑡2, . . . to be equally spaced, and
suggest ways of choosing the spacing in an adaptive way that balances the
number of times we do not simulate an event from the bounding process
on an interval, against the number of times we simulate events from the
bounding process that are not accepted. The idea is that if the intervals are
too low, we waste time by having too small an interval and thus having to
calculate the upper bound, whereas if the interval is too large then the upper
bound can become loose and we waste time by simulating lots of events
that are rejected. It is also possible to recycle calculations used to decide
whether to accept an event to improve the bounds.

5.4 Efficient Simulation of PDMP Samplers 163

0.0 0.5 1.0
t

1.1

1.0

0.9

0.8

0.7

0.6

f u

0.0 0.5 1.0
t

2.0

1.5

1.0

0.5

0.0

f u

Figure 5.5 Example of a convex function (left) and a concave
function (right). For a convex function, the straight line (shown in
grey) that joins any two points will upper-bound the function
between those two points. For a concave function, the straight line
(shown in grey dashed) that joins any two points will lower-bound
the function between those two points. For a concave function, we
can upper-bound the function by any tangent to the function
(shown in grey). Example bounds for [0, 0.5] and [0.5.1] are
shown by the grey line (left-hand plot) and minimum of the grey
lines (right-hand plot).

The final set of methods we will overview is based on simulating the
events using numerical methods. There have been two distinct approaches
that have been suggested. The first is based on the equation for directly
simulating the event times. Remember that we can simulate the next event
time for a process with rate _̃z(𝑡) by simulating 𝑢, a realisation of a standard
uniform random variable, and then finding 𝜏 the solution to

−
∫ 𝜏

0
_̃z(𝑠)d𝑠 = log(1 − 𝑢).

The smallest solution, 𝜏, of this equation, is the time until the next event.
Pagani et al. (2020) suggest solving this equation numerically using Brent’s
method (Press et al., 2007). The other approach is to use numerical methods
to find an upper bound. Corbella et al. (2022) suggest such a method, where
they use Brent’s algorithm to find the maximum of _̃z(𝑡) on some interval
[0, 𝑡1], then propose points from a constant rate set to this maximum and
use Poisson thinning. If no event is simulated over the interval [0, 𝑡1] they
repeat the process on the next interval.

164 Continuous-Time MCMC

The advantage of using such numerical methods is that they are fully
general, that is they can be applied to any model in an automatic manner.
The disadvantages are two-fold. First, computationally they can be slow,
depending on the numerical methods used. The second is that numerical
errors may lead to errors in the simulation of the dynamics of the PDMP,
so that the resulting PDMP may no longer target the correct distribution.
The hope is that any numerical error is small so that the PDMP will have
a stationary distribution that is still close to the target distribution. Pagani
et al. (2020) give results on how numerical error will impact the distribution
that the PDMP is sampling from.

Example: Bounded Hessian for Logistic Regression
Logistic regression is one example where we have a bounded Hessian. To
see this, let 𝜋(𝜽) be the posterior for the logistic regression model of Section
1.2.1 with a Gaussian prior. Then differentiating (1.5) gives

−𝜕
2 log 𝜋(𝜽)
𝜕\𝑖𝜕\𝑙

=
[
𝚺−1
𝜽

]
𝑖,𝑙
+

𝑁∑︁
𝑗=1

𝑥
(𝑖)
𝑗
𝑥
(𝑙)
𝑗

{
exp{x⊤𝑗 𝜽}

1 + exp{x⊤
𝑗
𝜽}

} {
1

1 + exp{x⊤
𝑗
𝜽}

}
,

where the subscripts 𝑖, 𝑙 denote the (𝑖, 𝑙)th element of the corresponding
matrix. Now, for any probability 𝑞 we have 𝑞(1 − 𝑞) ≤ 1/4, so

𝜕2 log 𝜋(𝜽)
𝜕\𝑖𝜕\𝑙

≤
[
𝚺−1
𝜽

]
𝑖,𝑙
+ 1

4

𝑁∑︁
𝑗=1

𝑥
(𝑖)
𝑗
𝑥
(𝑙)
𝑗
.

If we introduce a 𝑁 × 𝑑 matrix X whose (𝑗 , 𝑙)th entry is 𝑥 (𝑙)
𝑗

, then this gives
a bound on the Hessian of − log 𝜋(𝜽) that is J = 𝚺−1 + (1/4)X⊤X.

For the Bouncy Particle Sampler, the rate of the next bounce event, if the
current state is (𝜽 , p), is

max{0, p · ∇(− log 𝜋(𝜽 + 𝑡p)} ≤ max{0,−p · ∇(log 𝜋(𝜽) + ∥p∥∥Jp∥𝑡},

by the above argument. For the Zig–Zag Sampler, the rate of the next flip
of component 𝑖 of the velocity is bounded above by, for example,

max
{
0,−𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

+
√
𝑑∥Je𝑖 ∥𝑡

}
.

Example: Concave–convex Sampling for Bayesian Matrix Factorisation
Consider the Bayesian matrix factorisation model of Section 1.2.2. To sim-
plify notation we will assume an improper uniform prior for the parameters

5.4 Efficient Simulation of PDMP Samplers 165

𝜽 = {U,V} and set 𝜎2 = 1. The resulting log-posterior is

log 𝜋(U,V|Y) = −1
2

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(
𝑌𝑖 𝑗 −

𝑑∑︁
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗

)2 .
As we will see, the event rates for this model for the Zig–Zag Sampler or the
Bouncy Particle Sampler are polynomials of the time to an event, and such
events can be simulated by concave–convex sampling. We will show this
for the Zig–Zag Sampler, but the extension to the Bouncy Particle Sampler
is simple.

Consider the rate for update𝑈𝑖,𝑙. This depends on the derivative of minus
log 𝜋, which is

−𝜕 log 𝜋(U,V|Y)
𝜕𝑈𝑖,𝑙

=

𝑚∑︁
𝑗=1

(
𝑌𝑖, 𝑗 −

𝑑∑︁
𝑘=1

𝑈𝑖,𝑘𝑉𝑘, 𝑗

)
𝑉𝑙, 𝑗 .

If the current state is given by a position (U,V) and a velocity (¤U, ¤V) then
the rate of an event as a function of the time to the next event 𝑡 is

− ¤𝑈𝑖,𝑙
𝜕 log 𝜋(U + 𝑡 ¤U,V + 𝑡 ¤V|Y)

𝜕𝑈𝑖,𝑙

= ¤𝑈𝑖,𝑙
𝑚∑︁
𝑗=1

(
𝑌𝑖, 𝑗 −

𝑑∑︁
𝑘=1

(𝑈𝑖,𝑘 + 𝑡 ¤𝑈𝑖,𝑘) (𝑉𝑘, 𝑗 + 𝑡 ¤𝑉𝑘, 𝑗)
)
(𝑉𝑙, 𝑗 + 𝑡 ¤𝑉𝑙, 𝑗).

This is cubic in 𝑡, and it is easy to obtain a concave–convex decomposition
of this rate. The convex function will be the sum of terms in the cubic
expression that have positive coefficients, and the concave function will be
the sum of terms with negative coefficients.

5.4.2 Exploiting Model Sparsity
One advantage of PDMP samplers is that they can take advantage of a
certain type of sparsity in the target distribution to speed up computation.
This is most easily described for the Zig–Zag Sampler, though similar ideas
can be used for an adapted version of the Bouncy Particle Sampler (see the
section on the Local Bouncy Particle Sampler in Bouchard-Côté et al.,
2018).

We have described how we can simulate the Zig–Zag Sampler by simu-
lating 𝑑 event times, one for each possible transition of the velocity. We then
implement the event that occurs first, and then resimulate the further times
for each of the 𝑑 possible events. We repeat this process multiple times in

166 Continuous-Time MCMC

order to simulate the skeleton of a realisation of the process. However, we
can improve on this implementation if the event that occurs does not affect
the rates of many of the other types of events. This can happen if the model
has a form of sparsity in terms of

𝜕 log 𝜋(𝜽)
𝜕\𝑖

(5.15)

only depending on a small number of the components of 𝜽 .
To describe the idea formally, it is helpful to introduce some notation.

For 𝑖 = 1, . . . , 𝑑 let S𝑖 ⊂ {1, . . . , 𝑑} denote the components of 𝜽 that (5.15)
depends on. So if 𝑗 is not in S𝑖, then (5.15) will not change as we vary
\ 𝑗 if we keep all other components of 𝜽 fixed. This means that if we have
an event that changes the 𝑖th component of 𝜽 , then this will only affect
the future rate of events that change the 𝑗 th component of 𝜽 for 𝑗 ∈ S𝑖.
By the Markov property of the PDMP, if the rates are unchanged, we can
re-use the simulated event times for 𝑗 ∉ S𝑖 if 𝑗 ≠ 𝑖. We obviously need
to re-simulate the event that flips the 𝑖th component of the velocity even if
𝑖 ∉ S𝑖. The resulting algorithm is shown in Algorithm 11, with the key part
being that after each event we only re-simulate some of the event times, for
other events we just update and re-use the previously simulated times.

As one example of the potential advantage of this algorithm, consider
simulating a Gaussian target where the precision matrix is tri-diagonal.
That is, the (𝑖, 𝑗) entry of the precision matrix is zero if |𝑖 − 𝑗 | > 1. Such
a model occurs if there is some form of Markov or AR(1) structure to the
components of 𝜽 . In this case, S𝑖 = {𝑖 − 1, 𝑖, 𝑖 + 1} for 𝑖 = 2, . . . , 𝑑 − 1,
with S1 = {1, 2} and S𝑑 = {𝑑 − 1, 𝑑}. To understand the idea of Algorithm
11, imagine 𝑑 = 5 say, and that we have simulated that the further time to
the five possible events is 0.3, 0.7, 1.3, ∞ and 0.5. The event that occurs
first corresponds to flipping the first component of the velocity. This change
only affects the rate at which future events that affect the first and second
components of the velocity occur. So we need to re-simulate the further
time to the next event of these types. For the other three types of events, we
just update the further time to take account of the fact that a time of length
0.3 has passed. Thus the events at which the third to fifth components of
the velocity change will now occur after a further time period of 1.0,∞ and
0.2, respectively.

In terms of the computational advantage of this scheme, in this example,
if 𝑑 is large then the computational cost per iteration involves resampling
at most 3 event times rather than 𝑑 event times. It is also possible to further
improve on Algorithm 11 by using the fact that the order of occurrence of

5.4 Efficient Simulation of PDMP Samplers 167

Algorithm 11: Zig–Zag Sampler: Exploiting Sparsity
Input: Event rates for each type of event _𝑖, initial state (𝜽 , p),

simulation time 𝑇 .
Set 𝑠 = 0 and 𝑘 = 0.
for 𝑖 = 1, . . . , 𝑑 do

Simulate 𝑡𝑖 the time until the next event that flips the 𝑖th
component of the velocity.

end
while s<T do

Calculate further time to next event 𝑡 = min𝑖=1,...,𝑑{𝑡𝑖}.
Update position 𝜽 𝑠+𝑡 = 𝜽 𝑠 + 𝑡p.
Decide on event type, 𝑖∗ = arg min{𝑡𝑖}.
Update velocity p𝑠+𝑡 = 𝐹𝑖∗ (p).
Update time 𝑠 = 𝑠 + 𝑡.
Store skeleton points: set 𝑘 = 𝑘 + 1, 𝜏𝑘 = 𝑠 and 𝜽 𝜏𝑘 = 𝜽 𝑠.
Update further time to events:
for 𝑖 = 1, . . . , 𝑑 do

if 𝑖 ∈ S𝑖∗ ∪ {𝑖∗} then
Simulate 𝑡𝑖 the time until the next event that flips the 𝑖th
component of the velocity.

end
else

Set 𝑡𝑖 = 𝑡𝑖 − 𝑡.
end

end
end
Output: Skeleton of events {(𝜏𝑘 , 𝜽 𝜏𝑘)}𝑛𝑘=0

events that we do not re-simulate will not change (see Bouchard-Côté et al.,
2018) – and this can reduce the cost per iteration to be of the order of the
number of event times that we need to re-simulate.

Example: Logistic Regression
When would this idea be useful for sampling from the posterior of our
logistic regression model? The rate of an event that flips component 𝑖 of the
velocity depends on the \𝑖 derivative of log 𝜋(𝜽), which from (1.5), is

−
[
𝜽⊤𝚺−1

𝜽

]
𝑖
+

𝑁∑︁
𝑗=1

𝑥
(𝑖)
𝑗

{
𝑦 𝑗 −

exp{x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽}

}
.

168 Continuous-Time MCMC

We need this to depend on only a small set of components of 𝜽 . This would
require two things. First that 𝚺−1

𝜽 is sparse so only a small number of entries
of the 𝑖th row or column of 𝚺−1

𝜽 are non-zero. Second, we would require
that the observations for which \ (𝑖)

𝑗
≠ 0 would, combined, only have a small

number of components of the covariates that are non-zero. Formally, we can
define the set of rates that we would need to update after a flip of component
𝑖 of 𝜽 as

S𝑖 =
{
𝑘 : (𝚺−1)𝑖,𝑘 ≠ 0, or ∃ 𝑗 such that x(𝑖)

𝑗
x(𝑘)
𝑗

≠ 0
}
.

This can happen for models with random effects which are included
within 𝜽 . If we set the random effects to be \1, . . . , \𝑁 , then for 𝑗 ∈
{1, . . . , 𝑁}, x(𝑗)

𝑗
= 1 and x(𝑖)

𝑗
= 0 for 𝑖 ≠ 𝑗 . If further, we have that the

random effects are independent of each other and the other parameters, S𝑖
will only include the parameters of the fixed effects.

5.4.3 Data Subsampling Ideas
One potential advantage of PDMP samplers in Bayesian statistics is that they
can use subsampling ideas to reduce the computational cost per iteration.
This was first suggested for the Zig–Zag Sampler by Bierkens et al. (2019b),
though the ideas apply more widely.

The starting point is a more general observation that we can potentially
simulate from a target distribution if we have an unbiased estimator of
∇ log 𝜋. This is most easily seen for the Zig–Zag Sampler, and we will
focus just on this case for simplicity. See Fearnhead et al. (2018) and
related ideas for the local Bouncy Particle Sampler in Bouchard-Côté et al.
(2018) for how this is generalised to other PDMPs.

The Zig–Zag Sampler has 𝑑 possible types of event. Consider the 𝑖th
such event. If the current position is 𝜽 and the 𝑖th component of the velocity
is 𝑝𝑖, then this component flips with a rate

max
{
0,−𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

}
.

The key property of this rate that means that the sampler targets 𝜋(𝜽) is
that the difference in rate between a flip from 𝑝𝑖 to −𝑝𝑖 and the rate of the
reverse event is

max
{
0,−𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

}
−max

{
0, 𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

}
= −𝑝𝑖

𝜕 log 𝜋(𝜽)
𝜕\𝑖

.

In practice, for Zig–Zag, one of the two rates is equal to 0, and this is the

5.4 Efficient Simulation of PDMP Samplers 169

most efficient choice and corresponds to the Zig–Zag Sampler using the
canonical rates (see Section 5.3.1).

Now imagine we have a family of vector-valued random variables G(𝜽),
such that E [G(𝜽)] = −∇ log 𝜋(𝜽) for all 𝜽 . Then if we implement the
same dynamics as the Zig–Zag Sampler, but with the rate of flipping the
𝑖th component of the velocity equal to

E [max{0, 𝑝𝑖𝐺 𝑖 (𝜽)}] ,

then this will also produce a PDMP sampler that targets 𝜋. To see this, as
above, consider the difference in the rate of flipping 𝑝𝑖 to −𝑝𝑖 and the rate
of the reverse event. This is

E [max{0, 𝑝𝑖𝐺 𝑖 (𝜽)}] − E [max{0,−𝑝𝑖𝐺 𝑖 (𝜽)}]
= E [max{0, 𝑝𝑖𝐺 𝑖 (𝜽)} −max{0,−𝑝𝑖𝐺 𝑖 (𝜽)}]

= E [𝑝𝑖𝐺 𝑖 (𝜽)] = 𝑝𝑖E [𝐺 𝑖 (𝜽)] = −𝑝𝑖
𝜕 log 𝜋(𝜽)

𝜕\𝑖
,

where we have used the standard result max{0, 𝑥} − max{0,−𝑥} = 𝑥,
linearity of expectation, and the definition of the expectation of G. This is
precisely the condition we need on the rates for a PDMP Sampler with the
Zig–Zag dynamics to target 𝜋, the only difference is the rates being used
are no longer the canonical rates.

In order to use the Zig–Zag Sampler with these rates we need a way of
simulating the events. This is more challenging than for standard Zig–Zag
as we need to deal with the rates being defined implicitly by an expectation.
To do this, the standard approach is to find a bounding 𝑏𝑖 (𝜽) such that for
any realisation of G(𝜽) we have 𝑝𝑖𝐺 𝑖 (𝜽) ≤ 𝑏𝑖 (𝜽). If we can find such a
bound then we can still use Poisson thinning to simulate the events. Let the
time until the next event which flips 𝑝𝑖 be

_̃
(𝑖)
z (𝑡) = E [max{0, 𝑝𝑖𝐺 𝑖 (𝜽 + 𝑡p)}] ,

and the corresponding bounding rate, which is used to simulate potential
events, be 𝑏𝑖 (𝜽 + 𝑡p). Then Poisson thinning for events of rate _̃ (𝑖)z (𝑡) is
possible by using the following steps:

(T0) Set current time to 𝑠 = 0
(T1) Simulate the time 𝜏 > 𝑠 of the next event a process with rate _̄(𝑡) =

𝑏𝑖 (𝜽 + 𝑡p).
(T2) Simulate 𝑔𝑖, a realisation of 𝐺 𝑖 (𝜽 + 𝜏p).
(T3) Accept the event time with probability max{0, 𝑝𝑖𝑔𝑖}/𝑏𝑖 (𝜽 + 𝑡p). Other-

wise set 𝑠 = 𝜏 and return to (T1).

170 Continuous-Time MCMC

To see that this is a valid Poisson thinning algorithm to simulate events with
rate _̃ (𝑖)z (𝑡), we just need to calculate the probability of accepting an event
in step (T3). By averaging over the possible realisation of 𝑔𝑖 in step (T2)
and using the fact that by definition for any 𝑔𝑖, the probability in step (T3)
is less than or equal to 1, this is

E [max{0, 𝑝𝑖𝐺 𝑖}/𝑏𝑖 (𝜽 + 𝑡p)] =
E [max{0, 𝑝𝑖𝐺 𝑖}]

𝑏𝑖 (𝜽 + 𝑡p)
=

_̃
(𝑖)
z (𝑡)

𝑏𝑖 (𝜽 + 𝑡p)
,

as required.
How does this idea relate to the use of subsampling? Consider 𝜋 being a

posterior distribution, and suppose that log 𝜋 can be written as a sum

log 𝜋(𝜽) =
𝑁∑︁
𝑗=1

log 𝜋 𝑗 (𝜽),

where log 𝜋 𝑗 for 𝑗 = 1, . . . , 𝑁 is 1/𝑁 times the log-prior plus the log-
likelihood contributions from the 𝑗 th data point. Then this gives a simple
way of constructing an unbiased estimator of −∇ log 𝜋(𝜽), by simulating 𝐼
uniformly on {1, . . . , 𝑁} and setting G(𝜽) to −𝑁∇ log 𝜋𝐼 (𝜽).

The advantage of using such an unbiased estimator within the Zig–Zag
Sampler is that at each iteration of the Poisson thinning algorithm used to
simulate an event, i.e. step (T2) and (T3) above, we need to process only
one data point. This gives a per-iteration saving of a factor of 𝑁 over the
standard Zig–Zag Sampler which requires calculating derivatives of log 𝜋.
However, there are additional costs to using this subsampling idea. First,
often the bounds that we use for Poisson thinning will be larger if we use
subsampling – as they have to bound the rate for all possible realisations
of 𝑔𝑖. This will lead to more iterations of the Poisson thinning algorithm
to simulate the PDMP for the same amount of (stochastic process) time.
Second, as we are no longer using the canonical rates we will introduce
more events, and this will lead to more random-walk-like behaviour and
slower mixing. Empirical results in Bierkens et al. (2019b) suggest that
the overall effect of these is to counteract the factor of 𝑁 improvement in
per-iteration cost.

So can subsampling ideas within PDMPs be beneficial? It turns out they
can, but we must use a better, i.e. lower variance, estimator for G. This can
be done using control variate ideas that are common in SGLD (see Section
3.3.1). We first run an optimisation algorithm, such as SGD, to find the
mode or a value close to the mode of log 𝜋. Denote this value by �̂� . Then

5.4 Efficient Simulation of PDMP Samplers 171

we can write

log 𝜋(𝜽) = log 𝜋(�̂�) +
𝑁∑︁
𝑗=1

{log 𝜋 𝑗 (𝜽) − log 𝜋 𝑗 (�̂�)}.

So an unbiased estimator can be obtained by first sampling 𝐼 uniformly on
{1, . . . , 𝑁} and then setting G(𝜽) to

− log 𝜋(�̂�) − 𝑁{∇ log 𝜋𝐼 (𝜽) − ∇ log 𝜋𝐼 (�̂�)}.

Importantly the term − log 𝜋(�̂�) is a constant, so requires a single up-front
𝑂 (𝑁) cost to calculate it. Then evaluating a realisation of this estimator
has 𝑂 (1) cost. If the Hessian of − log 𝜋 is bounded, then Bierkens et al.
(2019b) show that we can obtain the bounds needed to simulate the Zig–Zag
Sampler using this unbiased estimator using the linear bounds described for
bounded Hessian targets in Section 5.4.1. In this case, for a fixed accuracy
of the final Monte Carlo sample, we can obtain a speed-up by a factor of 𝑁 ,
after finding �̂� and calculating − log 𝜋(�̂�), relative to the standard Zig–Zag
Sampler.

Example: Subsampling for Logistic Regression
To further explain how to implement the Zig–Zag Sampler with subsam-
pling, we will consider the logistic regression model. To simplify exposition
we will assume that we have an improper flat prior, so in the notation above
𝜋0(𝜽) ∝ 1. Thus we can drop the contribution of the prior to 𝜋 and we have
𝜋(𝜽) ∝∏𝑁

𝑗=1 𝜋 𝑗 (𝜽) with

𝜋 𝑗 (𝜽) =
(

exp{𝑦 𝑗x⊤𝑗 𝜽}
1 + exp{x⊤

𝑗
𝜽}

)
,

where 𝑦 𝑗 is the binary response and x 𝑗 is the vector of covariates for the
𝑗 th observation.

Taking the first derivatives of − log 𝜋(𝜽) gives

−
𝜕 log 𝜋 𝑗 (𝜽)

𝜕\𝑖
= 𝑥

(𝑖)
𝑗

{
exp{x⊤𝑗 𝜽}

1 + exp{x⊤
𝑗
𝜽} − 𝑦 𝑗

}
.

Using 0 ≤ exp(𝑎)/(1 + exp(𝑎)) ≤ 1, we have that the modulus of this
derivative is bounded by 𝑥 (𝑖)

𝑗
. Thus if we use the unbiased estimator

𝐺 𝑖 (𝜽) = −𝑁
𝜕 log 𝜋𝐼 (𝜽)

𝜕\𝑖
, 𝐼 uniformly distributed on {1, . . . , 𝑁},

172 Continuous-Time MCMC

then we can bound the rate of an event by

𝑏𝑖 (𝜽) = 𝑁 max
𝑗=1,...,𝑁

|𝑥 (𝑖)
𝑗
|.

In the following, we will call the resulting sampler Zig–Zag with subsam-
pling.

How about if we use control variates? Fix �̂� , and consider the estimator
of the gradient

𝐺
(𝐶𝑉)
𝑖
(𝜽) = −𝜕 log 𝜋(�̂�)

𝜕\𝑖
− 𝑁

(
𝜕 log 𝜋𝐼 (𝜽)

𝜕\𝑖
− 𝜕 log 𝜋𝐼 (�̂�)

𝜕\𝑖

)
,

with again, 𝐼 is uniformly distributed on {1, . . . , 𝑁}. To obtain appropriate
bounds for p(𝑗)G(𝑗)

𝐶𝑉
(𝜽), consider the second derivatives

−
𝜕2 log 𝜋 𝑗 (𝜽)
𝜕\𝑖𝜕\𝑙

= 𝑥
(𝑖)
𝑗

x(𝑙)
𝑗

{
exp{x⊤𝑗 𝜽}

(1 + exp{x⊤
𝑗
𝜽)})2

}
.

As before using that 0 ≤ exp(𝑎)/(1 + exp(𝑎))2 ≤ 1/4, we can bound the
modulus of this second derivative by (1/4) |x(𝑖)

𝑗
x(𝑙)
𝑗
|. This gives the following

bound�����𝜕 log 𝜋 𝑗 (𝜽 + 𝑡p)
𝜕\𝑖

−
𝜕 log 𝜋 𝑗 (�̂�)

𝜕\𝑖

�����
≤

����𝜕 log 𝜋 𝑗 (𝜽 + 𝑡p)
𝜕\𝑖

−
𝜕 log 𝜋 𝑗 (𝜽)

𝜕\𝑖

���� + �����𝜕 log 𝜋 𝑗 (𝜽)
𝜕\𝑖

−
𝜕 log 𝜋 𝑗 (�̂�)

𝜕\𝑖

�����
≤ 1

4
|𝑥 (𝑖)
𝑗
|∥x𝑖 ∥

(
∥𝜽 − �̂� ∥ + 𝑡∥p∥

)
, (5.16)

where ∥·∥ denotes the Euclidean norm. The latter inequality comes from (i)
bounding the change in a function by the size of the change in the argument
times a bound on the gradient in the direction of the change; and (ii) as the
gradient 𝜕 log 𝜋 𝑗/𝜕\𝑖 is bounded by (1/4) |x(𝑖)

𝑗
x(𝑙)
𝑗
| in the 𝑙th direction, we

can bound the dot-product of the gradient with a vector v by

𝑑∑︁
𝑙=1

1
4
|𝑥 (𝑖)
𝑗
𝑥
(𝑙)
𝑗
𝑣𝑙 | =

1
4
|𝑥 (𝑖)
𝑗
|
𝑑∑︁
𝑙=1

|𝑥 (𝑙)
𝑗
𝑣𝑙 | ≤

1
4
|𝑥 (𝑖)
𝑗
|∥x𝑖 ∥∥v∥,

with the last step using Cauchy–Schwarz.
Using (5.16), we get the following linear bound on the rate of events

5.4 Efficient Simulation of PDMP Samplers 173

when we use control variates.

max{0, 𝑝𝑖𝐺 (𝐶𝑉)𝑖
(𝜽 + 𝑡p)}

≤ max

{
0,−𝑝𝑖

𝜕 log 𝜋(�̂�)
𝜕\𝑖

+ 1
4
𝑁𝑀𝑖

(
∥𝜽 − �̂� ∥ + 𝑡∥p∥

)}
,

where 𝑀𝑖 = max 𝑗=1,...,𝑁 (|𝑥 (𝑖)𝑗 |∥x 𝑗 ∥). In the following, we will call the
resulting sampler Zig–Zag with control variates.

To demonstrate how subsampling works in practice and the scaling of
the methods with sample size we will compare three PDMP samplers for
logistic regression with sample sizes of 𝑁 = 100 and 𝑁 = 900. These are the
standard Zig–Zag Sampler, Zig–Zag with subsampling and Zig–Zag with
control variates. In particular, we want to give intuition about the different
impacts of the computational cost for estimating gradients, the efficiency
of the Poisson thinning bounds on simulating events, and the mixing of the
PDMP on the three algorithms.

Results are shown in Figure 5.6. There are a number of points to draw
out. First, we see the potential advantage of subsampling in reducing the
cost per iteration of the samplers. If this is dominated by accessing and
calculating gradients for each data point, then the subsampling versions of
Zig–Zag are able to propose many more event times (as seen by the larger
number of blue dots for the middle and bottom rows). However, this in itself
does not lead to a more accurate MCMC method for the same computational
cost – as the drawback of subsampling is that the bounds used for Poisson
thinning are worse. About two proposed events are needed for one actual
event with standard Zig–Zag, but this reduces to over 10 proposed events
for the two samplers which use subsampling.

One impact of this is, if we consider 𝑁 = 100 then the standard Zig–
Zag process is simulated for stochastic process time of 80 time units, and
this is only increased to 130 time units for Zig–Zag with subsampling
and 160 time units for Zig–Zag with control variates. Moreover, the Zig–
Zag processes which use subsampling have a higher overall rate of events,
particularly when control variates are not used. This leads to more random-
walk behaviour for Zig–Zag with subsampling (see middle row) which
worsens the mixing of the sampling. This is less of an issue when we use
control variates.

Next, consider the scaling of the algorithms by comparing 𝑁 = 100 with
𝑁 = 900. First, the posterior for 𝑁 = 900 is more concentrated, but if we
re-scale axes (as has been done in the plots) then the posterior contours and
the dynamics of standard Zig–Zag are similar for the two cases. However, if

174 Continuous-Time MCMC

Figure 5.6 Example output of Zig–Zag Samplers for logistic
regression: standard Zig–Zag (top row), Zig–Zag with
subsampling (middle row) and Zig–Zag with control variates
(bottom row). For each plot, the heat map shows the contours of
log 𝜋, the black line shows the trajectory of Zig–Zag and the blue
dots show the points where we propose a possible event. In all
cases, we ran Zig–Zag for the same number of data-point gradient
calculations. As the top row does not involve subsampling, this
means we propose 𝑁-times as many events for the middle and
bottom rows as for the top row. Results for 𝑁 = 100 (left-hand
column) and 𝑁 = 900 (right-hand column).

5.5 Extensions 175

we have fixed the computational resource, then the impact on standard Zig–
Zag is that we can only simulate the process for a shorter period – in this
case simulating 9 times fewer actual events. For Zig–Zag with subsampling,
we are able to propose the same number of events, but the higher rate of
events and the looser bound for Poisson thinning means that we are only
able to simulate a trajectory that is only 4 times as long as for the standard
Zig–Zag, despite proposing 900 times as many events. Moreover, we see
that the trajectory is increasingly diffusive and thus the overall exploration
of the state-space of this sampler qualitatively looks no better than for
standard Zig–Zag. This property is shown more rigorously by Bierkens
et al. (2019b), who show that the scaling with 𝑁 of the standard Zig–Zag
and Zig–Zag with subsampling is similar. Moreover, their empirical results
suggest that for the same computational cost, standard Zig–Zag is more
accurate.

By comparison, we see better mixing behaviour for Zig–Zag with control
variates. The sampler is able to simulate a trajectory that is approximately
ten times as long as the standard Zig–Zag. Moreover, the mixing looks
qualitatively similar to that of the algorithm for 𝑁 = 100 and to that of
the standard Zig–Zag for 𝑁 = 900. This is again shown more rigorously in
Bierkens et al. (2019b), where results suggest that the accuracy as measured,
say, by effective sample size per CPU cost scales by a factor of 𝑁 better for
Zig–Zag with control variates than for the other two samplers. However,
Zig–Zag with control variates does need an additional pre-processing step
to find the mode, or a value near the mode, of the posterior and to calculate
the gradient of the log posterior at this estimate of the mode. This improved
scaling has been termed super-efficiency, and the fact that we can only
achieve super-efficiency after a pre-processing step is shown theoretically
by Johndrow et al. (2020).

5.5 Extensions

The PDMP samplers we have considered so far are appropriate for sampling
from continuous densities that are differentiable almost everywhere and are
based on specific constant velocity dynamics. We now describe recent work
at generalising the samplers: to allow sampling from discontinuous targets;
introduce reversible-jump moves to allow sampling from targets defined
across spaces of different dimension; and generalise the velocity space and
the constant velocity dynamics.

176 Continuous-Time MCMC

5.5.1 Discontinuous Target Distribution
The PDMP samplers we have described can sample from target densities
that are differentiable everywhere. It is also easy to see that they are suitable
for densities that are non-differentiable, providing the set of points where
the density is not differentiable is a null set. However, as described, they
cannot be used for densities that are not continuous everywhere.

It is possible to extend PDMP samplers so they are suitable for many
discontinuous target densities. The idea is to use standard PDMP dynamics
in regions where the target is continuous, and then add additional dynamics
whenever the PDMP sampler reaches a point of discontinuity. This approach
has been suggested by Bierkens et al. (2018) for continuous densities,
but defined only on a compact region, and by Chevallier et al. (2021) in
more generality. We will outline the basic idea and give some examples of
appropriate dynamics at points of discontinuity for different samplers.

Assume our target density 𝜋(𝜽) can be defined in terms of a set of
continuous densities, 𝜋 (𝑖) , each constrained to a set of open regions 𝐸𝑖 of
R𝑑 , for 𝑖 = 1, . . . , 𝐾 for some 𝐾 . Let Γ be the set of 𝜽 points that lie on the
boundary of one or more regions, and assume this is a null-set with respect
to Lebesgue measure of R𝑑 . We assume that 𝐸𝑖 and Γ partition R𝑑 , so that
any 𝜽 ∈ R𝑑 lies in precisely one of 𝐸1, . . . , 𝐸𝐾 , Γ. For 𝜽 ∉ Γ, our target is

𝜋(𝜽) = 𝜋 (𝑖) (𝜽) for 𝜽 ∈ 𝐸𝑖 .

The simplest example of such a density will be for 𝜽 constrained to some
compact region, 𝐸1. In this case we have Γ as the boundary of 𝐸1 and 𝐸2 is
the complement of 𝐸1 ∪ Γ, with 𝜋 (2) (𝜽) = 0 for 𝜽 ∈ 𝐸2.

The idea is that we can define a PDMP sampler that is appropriate for
each 𝜋 (𝑖) , but need to now define what happens when the 𝜽 component of the
state tries to leave 𝐸𝑖. To explain this, whilst keeping the notation simple,
we will consider the case of 𝐾 = 2 regions, and describe conditions for
the PDMP sampler on the boundary between 𝐸1 and 𝐸2 that are sufficient
for it to target 𝜋(𝜽) as defined above. Extending this to 𝐾 > 2 is trivial as
we just apply the same conditions to each boundary between two regions.
(We do not need to consider behaviour at points that lie on the boundary
between three or more regions as the sampler will not hit such points with
probability 1.)

For 𝜽 ∈ Γ, let n(𝜽) be the normal to the boundary and assume that
the normal is defined to point out of region 𝐸1. Assume we have a PDMP
sampler with velocity setV and with stationary distribution for the velocity
component that is independent of 𝜽 and is denoted by 𝜋p. Once we hit the

5.5 Extensions 177

boundary, the velocity will determine whether the state is moving out of 𝐸1
and into 𝐸2 or vice-versa. To distinguish these two possibilities, define for
each 𝜽 ∈ Γ

V+𝜽 =
{
p ∈ V : n(𝜽)⊤p > 0

}
, and V−𝜽 =

{
p ∈ V : n(𝜽)⊤p < 0

}
.

So, for example, if the state is (𝜽 , p) for 𝜽 ∈ Γ and p ∈ V+𝜽 then the sampler
was in region 𝐸1 and is moving into 𝐸2.

Now define a family of probability density, or probability mass, functions
for p ∈ V, as

ℓ𝜽 (p) =
{
|n(𝜽)⊤p| 𝜋p(p)𝜋 (2) (𝜽) if p ∈ V+𝜽
|n(𝜽)⊤p| 𝜋p(p)𝜋 (1) (𝜽) otherwise

This is just proportional to the density 𝜋p(p) weighted by the size of the
velocity in the direction of the normal n(𝜽) and weighted by the density at
𝜽 in the region that the sampler is moving to.

Finally, define a family of transition kernels for the velocity component,
Q𝑏𝜽 (p′ ∈ ·|p) for each 𝜽 ∈ Γ. The following theorem, taken from Chevallier
et al. (2021), gives appropriate dynamics for our PDMP sampler on the
boundary.

Theorem 5.4 Assume 𝜋p is symmetric, so 𝜋p(p) = 𝜋p(−p), and that for
each 𝜽 ∈ Γ the transition kernel Q𝑏𝜽 has ℓ𝜽 as its invariant distribution.
Then a PDMP sampler with:

(i) dynamics for 𝜽 ∈ 𝐸𝑖, for 𝑖 = 1, 2, that have invariant distribution
𝜋 (𝑖) (𝜽)𝜋p(p); and

(ii) for 𝜽 ∈ Γ has a transition that keeps 𝜽 unchanged but that:
(B1) flips the velocity p′ = p;
(B2) updates the velocity according to Q𝑏𝜽 , i.e. p′′ ∼ Q𝑏𝜽 (·, p′); and
(B3) updates the state of the PDMP to (𝜽 , p′′);

will have invariant distribution 𝜋(𝜽)𝜋p(p).

Steps (B1) – (B3) of the theorem give appropriate dynamics for the
velocity when we hit the boundary, with (B2) stated in terms of a transition
kernel that has ℓ𝜽 as its invariant distribution.

There are various possible choices of dynamics due to different choices
for the transition kernel. A trivial choice for Q𝑏𝜽 is the identity map. In this
case, the transition at the boundary is to reverse the sign of the velocity,
which means that the sampler will never leave the region that it starts with.
Thus this choice is only suitable for the case where we start the sampler in
𝐸1 and where 𝜋 (2) (𝜽) = 0, i.e. there is no probability mass in 𝐸2. Even in

178 Continuous-Time MCMC

this case, this choice may not be a good one, as it will force the sampler to
retrace its steps once it hits the boundary, which will slow down mixing.

An alternative choice is to define Q𝑏𝜽 to be independent of the current
velocity, and just to involve sampling from ℓ𝜽 . The problem with this is that
sampling from ℓ𝜽 may be difficult. For both the Coordinate Sampler and
the Zig–Zag Sampler, ℓ𝜽 is a discrete distribution, and can be calculated
exactly. For the Coordinate Sampler, p can take 2𝑑 possible values, and
this approach can be reasonable. However, for the Zig–Zag Sampler, p
can take 2𝑑 possible values, and thus calculating and simulating from ℓ𝜽 is
prohibitive unless 𝑑 is small. In cases where ℓ𝜽 is difficult to sample from one
can instead use Metropolis–Hastings to define a transition kernel that has
the required invariant distribution. This involves proposing a new velocity
from an arbitrary proposal distribution and then accepting or rejecting that
proposal. The problem with this is that if the acceptance probability is not
high then we are likely to reject the proposal, and our new velocity will
just be minus the velocity with which we hit the boundary, from step (B1),
which will inhibit mixing. A partial solution is to define Q𝑏𝜽 to involve
𝐿 > 1 Metropolis–Hastings steps, though this comes with an increased
computational cost of sampling from Q𝑏𝜽 .

For the Bouncy Particle Sampler, there is a simple and very natural choice
of dynamics at the boundary which satisfies the condition of Theorem 5.4.
If p ∈ V+𝜽 , so we are currently moving out of 𝐸1 then the dynamics are:

(R1) With probability min{1, 𝜋 (2) (𝜽)/𝜋 (1) (𝜽)} the velocity is unchanged, i.e.
p′′ = p;

(R2) Otherwise, we reflect the velocity in the tangent to the boundary at 𝜽 , i.e.
using the notation introduced for reflections p′′ = Rn(𝜽) (p).

If p ∈ V−𝜽 , then the dynamics are as above but with 𝜋 (1) and 𝜋 (2) inter-
changed in (R1). Under these dynamics, if the sampler is moving to a region
of higher probability density, it continues. If not, then with some probability
it continues, otherwise it reflects back. A special case where we have 𝜋(𝜽)
defined only on the compact region 𝐸1, so that 𝜋 (2) (𝜽) = 0, in which case
the sampler will always reflect if it hits the boundary.

We cannot apply similar dynamics for the Zig–Zag Sampler unless the
boundary aligns appropriately with the velocity axes, as the reflected ve-
locity in step (R2), Rn(𝜽) (p), may no longer be a valid velocity. However,
Chevallier et al. (2021) show that the above dynamics for the Bouncy Parti-
cle Sampler can be viewed as the behaviour of the Bouncy Particle Sampler
if we approximate the discontinuous target by a continuous one, by smooth-
ing out the discontinuity, but then consider the limit where we allow the

5.5 Extensions 179

transition between 𝜋 (1) and 𝜋 (2) to occur more quickly. By the same strat-
egy, we can construct an appropriate transition kernel for Zig–Zag, see
Chevallier et al. (2021) for more details.

Example: Logistic Regression with Constraints
As an example application for this algorithm, consider the logistic regres-
sion model but with constraints on the parameters. There are two natural
constraints, one is that we may know that the effect of a covariate is such that
larger values will increase, say, the probability of observing a response of
1. If the 𝑖th component of the x 𝑗s is such a covariate, then \𝑖 ≥ 0. Similarly,
if an increase in the 𝑖th component of the covariate vector is known to lead
to a decrease in the probability, then \𝑖 ≤ 0. Alternatively, we may have
some constraints on the size of the effect, e.g. \𝑖 ≥ \𝑙.

For the Bouncy Particle Sampler, the simplest way of including such a
constraint is to calculate the time when the current deterministic dynamics
will first violate the constraint. If an event does not happen by this time,
then we just reflect the velocity off the boundary of 𝜽 space implied by the
constraint. For the constraint \𝑖 ≥ 0 or \𝑖 ≤ 0 this would involve flipping
the 𝑖th component of the velocity. For the constraint \𝑖 ≥ \𝑙, this involves
the reflection Rg with g defined so 𝑔𝑖 = 1, 𝑔𝑙 = −1 and all other entries set
to zero.

In this example, we can use the same adaption to the Zig–Zag Sampler,
as for each constraint the reflection at the boundary will produce a new
velocity that is valid for the sampler. However, this would not be the case
if, for example, we wanted to enforce a constraint such as \1 > 2\2.

5.5.2 Reversible Jump PDMP Samplers
Another class of distributions that the standard PDMP samplers are not
suitable for are distributions defined on a set of spaces of different dimen-
sions. In the following, we think of this in terms of a distribution over a
discrete set of models, with a continuous density for each model. Whilst
PDMPs can be used to explore the distribution defined for each model, we
would need a way of moving between these models – which would lead to
a type of reversible jump version of PDMP samplers.

One approach to do this is to add additional events that introduce discrete
jumps from one space to another. Such moves have been proposed for other
continuous-time samplers, see Grenander and Miller (1994), Phillips and
Smith (1996) and Stephens (2000). However, they can be hard to implement
due to challenges with simulating these moves with the correct rate.

180 Continuous-Time MCMC

A computationally more efficient procedure exists if the different models
are defined in terms of some common 𝑑-dimensional parameter 𝜽 , but each
model fixes one or more components of 𝜽 to a specific value. The most
common example of such a distribution is the posterior distribution for
the coefficients of a linear or generalised linear regression model, where
different models correspond to including different sets of covariates in
the model. Thus we can define 𝜽 to be the coefficients for the full set of
covariates, and a given model will fix the coefficients of covariates not in
the model to zero.

To motivate the form of the PDMP samplers we will introduce, consider
first the case where we have a single covariate, so 𝑑 = 1. Also, ignore
having any intercept in the linear or generalised linear model. We now have
two models, depending on whether we include the covariate or not. If ℓ(\)
denotes the likelihood as a function of \ and if we have a prior that is a
mixture of point mass at 0, which we will denote by 𝛿0(\), and a prior
defined on R, a(\), then the posterior distribution is

𝜋(\) ∝ 𝑤𝛿0(\)ℓ(\) + (1 − 𝑤)a(\)ℓ(\),

where𝑤 is the prior probability of excluding the covariate. Whilst we cannot
use a standard PDMP to sample from this target, we can approximate the
prior by replacing the point mass at zero with a distribution concentrated
around zero. If we use a Gaussian density with variance 𝜎2 for 𝜎 ≈ 0, then
we have the target

𝜋𝜎 (\) ∝ 𝑤N(\; 0, 𝜎2)ℓ(\) + (1 − 𝑤)a(\)ℓ(\), (5.17)

where N(\; 0, 𝜎2) denotes the density of a Gaussian with mean 0 and vari-
ance𝜎2. We can now use a PDMP to sample from this posterior distribution.
Also by letting 𝜎 → 0 we have that this posterior will tend, in some sense,
to the posterior with the point mass at 0. So a natural approach is to consider
the dynamics of the PDMP targeting 𝜋𝜎 and whether we get well-defined
dynamics in the limit of 𝜎 → 0.

Figure 5.7 shows the dynamics for three different values of𝜎. We see that
in each case the sampler will spend periods of time in the neighbourhood
of 0. As we reduce 𝜎, these neighbourhoods concentrate closer to 0 but the
time the sampler spends in them seems to be similarly distributed. Away
from the neighbourhood, the dynamics are those of sampling from a density
proportional to a(\)ℓ(\). This suggests the limiting behaviour would be that
of a PDMP targeting a(\)ℓ(\) but that if \𝑡 hits zero then the sampler stays
at zero for a random amount of time.

Chevallier et al. (2023) propose such a PDMP sampler, and show that if

5.5 Extensions 181

0 50
t

2

0

2

θ t

0 50
t

2

0

2

θ t

0 50
t

2

0

2

θ t

Figure 5.7 Example output from PDMP sampler for a target that
is an equal mixture of a N(0, 1) distribution and a 𝑁 (0, 𝜎2)
distribution for 𝜎 = 0.1 (left), 𝜎 = 0.01 (middle) and 𝜎 = 0.001
(right). As 𝜎 → 0 the trajectories qualitatively converge to
periods at, or close to 0, and periods where the trajectory is
governed by the N(0, 1) distribution. This limit is the form for the
reversible jump PDMP sampler. The computational advantage of
using the limiting dynamics is that it avoids simulating the larger
number of events close to 0 – which was of the order of 10000 for
the right-hand plot.

we specify the dynamics as given below it will target the correct distribution
across models. To describe the sampler for a 𝑑-dimensional parameter 𝜽 ,
assume that

𝜋(𝜽) =
2𝑑∑︁
𝑘=1

𝜋𝑘 (𝜽),

where we assume that each model 𝑘 corresponds to a different set of com-
ponents of 𝜽 being set to zero. Here, 𝜋𝑘 (𝜽) is, up to proportionality, the
density of 𝜽 associated with the 𝑘th model. These densities must be defined
up to a common constant of proportionality across all models.

For model 𝑘 , let S𝑘 be the active set of model 𝑘 , that is the set of indices
of components of 𝜽 that are non-zero for model 𝑘 . The idea of the PDMP
is that if we are currently exploring model 𝑘 we will simulate a PDMP that
targets 𝜋𝑘 (𝜽), and that has non-zero velocity only for components of 𝜽 that
are in S𝑘 . But in addition, we allow two further events. The first is that if a
component of 𝜽 hits zero, and we denote this component by 𝑖, then we move
to the model with active set S𝑘\{𝑖}. The second is that for each 𝑗 ∉ S𝑘 we
have a rate of moving to the model with active set S𝑘 ∪ { 𝑗}. If we move
to such a model we do not change 𝜽 , but simulate a new velocity p, which
will have a non-zero velocity for component 𝑗 .

To define such a sampler we just need to specify the rate of adding

182 Continuous-Time MCMC

a component to the model, and the distribution of the velocity after the
transition. We will describe these for the Zig–Zag Sampler and the Bouncy
Particle Sampler. For general results, and generalisations of this sampler
which does not always move between models when a component of 𝜽 hits
zero, see Chevallier et al. (2023).

For the Zig–Zag Sampler, assuming we are in model 𝑘 with current state
(𝜽 , p), we have the following process for adding a variable to the model.

(Add–ZZ) For each 𝑗 ∉ S𝑘 , move to model 𝑘 ′ with active set S𝑘 ∪ { 𝑗} at rate
𝜋𝑘′ (𝜽)/𝜋𝑘 (𝜽). Set the new velocity, p′, such that 𝑝′𝑖 = 𝑝𝑖 for 𝑖 ≠ 𝑗 and
𝑝′𝑗 is drawn uniformly at random from {−1, 1}.

For the Bouncy Particle Sampler, with standard Gaussian distribution for
the velocity, again assuming we are in model 𝑘 , with current state (𝜽 , p),
we have the following

(Add–BPS) For each 𝑗 ∉ S𝑘 , move to model 𝑘 ′ with active set S𝑘 ∪ { 𝑗} at rate

2
√

2𝜋
𝜋𝑘′ (𝜽)
𝜋𝑘 (𝜽)

.

Set the new velocity, p′, such that 𝑝′𝑖 = 𝑝𝑖 for 𝑖 ≠ 𝑗 and 𝑝′𝑗 = 𝑥 is
simulated from a distribution with density function proportional to

|𝑥 | exp
{
−1

2
𝑥2

}
,

this is a standard normal density function scaled by |𝑥 |.

The intuition for the density of the new velocity component for the Bouncy
Particle Sampler is that it is skewed, relative to its invariant distribution, to
larger absolute values of the velocity as these correspond to velocities that
would hit zero more quickly.

Importantly for both samplers, the rates at which we add components
will often be simple. If our target distribution is defined as a posterior
distribution, with common likelihood for each model, then the likelihood
components of the posteriors will cancel and the rates will just depend on
the ratio of priors. For many priors, the distribution of each component of
𝜽 will be independent, in which case these rates become constant.

For the Zig–Zag Sampler, one can improve on this sampler by remember-
ing the velocity of each inactive component prior to it becoming inactive.
Then, when that component is re-introduced to the model we re-use the same
velocity. This is the Sticky Zig–Zag Sampler of Bierkens et al. (2023b). It

5.5 Extensions 183

can mix better as it ensures that the dynamics of each component of 𝜽
reflects less often.

Example: Logistic Regression with Model Choice
An extension to the logistic regression model of Section 1.2.1 is to include
a choice as to which covariates to include in the model. We will consider
two example priors, and calculate the rate of adding a covariate to the model
for the Zig–Zag Sampler in each case.

A common prior would be to assume independence across covariates, so
\𝑖 = 0 with probability 𝑤𝑖 and is drawn from a normal distribution with
mean 0 and variance 𝜎2

𝑖 with probability 1−𝑤𝑖. In this case, because of the
independence, if covariate 𝑖 is not in the current model, the rate at which
we add it will not depend on the value of \𝑙 for 𝑙 ≠ 𝑖. Thus, this rate will be
constant and equal to

(1 − 𝑤𝑖)
𝑤𝑖

1√︃
2𝜋𝜎2

𝑖

,

the ratio of the prior probability of a model which includes covariate 𝑖 to
the prior probability of the same model without covariate 𝑖, times the prior
probability density of \𝑖 = 0 under the former model.

What about when we have a prior under which components of 𝜽 are
dependent? Assume we are currently in model 𝑘 which does not include
the 𝑖th covariate, and that adding this covariate will produce model 𝑘 ′. Let
𝑞𝑘 and 𝑞𝑘′ be the prior probability of the two models and assume that they
both have Gaussian priors on 𝜽 with mean 0 and covariance matrices on
the active components of 𝜽 denoted by 𝚺𝑘 and 𝚺𝑘′ respectively. Let 𝑎𝑘 be
the number of active components of model 𝑘 , with 𝑎𝑘′ = 𝑎𝑘 + 1. We can
introduce matrices A𝑘 and A𝑘′ so that the prior for the active components
of 𝜽 under our prior for model 𝑘 is(

1
2𝜋

)𝑎𝑘/2
det(𝚺𝑘)−1/2 exp

{
−1

2
𝜽⊤A𝑘𝜽

}
.

This is possible by padding A with zeroes, so if covariate 𝑙 is not in the
model then 𝐴𝑙 𝑗 = 𝐴 𝑗𝑙 = 0, for 𝑗 = 1, . . . , 𝑑.

With this definition of the prior, the rate of moving from model 𝑘 to 𝑘 ′
as a function of 𝜽 becomes

𝑞𝑘′

𝑞𝑘

(
1

2𝜋

)1/2 (
det(𝚺𝑘)
det(𝚺𝑘′)

)1/2

exp
{
−1

2
𝜽⊤(A𝑘′ − A𝑘)𝜽

}
.

184 Continuous-Time MCMC

Define 𝐶 to be the constant before the exponential term. If our current state
is (𝜽 , p) then the rate until we move to model 𝑘 ′ is

𝐶 exp
{
−1

2
(𝜽⊤ + 𝑡p) (A𝑘′ − A𝑘) (𝜽 + 𝑡p)

}
=

𝐶 exp
{
−1

2
𝜽⊤(A𝑘′ − A𝑘)𝜽

}
exp

{
−𝜽⊤(A𝑘′ − A𝑘)p𝑡 −

1
2

p⊤(A𝑘′ − A𝑘)p𝑡2
}
.

This is of the form 𝑎 exp{𝑏𝑡 + 𝑐𝑡2} for some constants 𝑎, 𝑏 and 𝑐. We can
simulate the time of the next event with this rate if 𝑐 ≤ 0 as the integral of
the rate is analytic for 𝑐 = 0, and can be expressed in terms of probabilities
of a normal distribution for 𝑐 < 0. For 𝑐 > 0, we can use Poisson thinning
with e.g. bounds of the form 𝐴 exp{𝐵𝑡} over suitable intervals for 𝑡.

5.5.3 More General Velocity Models
Another possible way of extending PDMP samplers is to consider more
general models for the dynamics. There are two simple ways of doing
this, the first is to alter the distribution of the velocities for the Bouncy
Particle Sampler or the Zig–Zag Sampler so that they are not spherically
symmetric. The other is to consider non-constant velocity models. We will
briefly describe each of these in turn.

First, we will focus on the Zig–Zag Sampler. If we let e𝑖 be the 𝑖th unit
vector, i.e. the vector whose 𝑖th component is 1 and all other components
are 0, then the set of velocities of the Zig–Zig are the velocities of the form∑𝑑
𝑖=1 𝑎𝑖e𝑖, where 𝑎𝑖 ∈ {−1, 1} for 𝑖 = 1, . . . , 𝑑. That is, they are the set of

velocities that one obtains by adding plus or minus each unit vector. The
rate of flipping 𝑎𝑖 is equal to the maximum of 0 and minus the dot product
of 𝑎𝑖e𝑖 with ∇ log 𝜋(𝜽).

To generalise this we just need to replace the unit vectors with another
set of vectors that span R𝑑 . Denote this set by p1, . . . , p𝑑 . Importantly for
Zig–Zag, the change to the process is trivial – as the event rates are of a
similar form but with e1, . . . , e𝑑 replaced with p1, . . . , p𝑑 . There are two
natural approaches to choosing p1, . . . , p𝑑 . One is to just change the speed
in each direction, so p𝑖 = 𝑐𝑖e𝑖 for some set of positive scalars 𝑐1, . . . , 𝑐𝑑 .
This can be helpful if different components of 𝜽 under 𝜋 are on different
scales. A natural choice is to set 𝑐𝑖 to be an estimate of the marginal standard
deviation of 𝜽 𝑖 under 𝜋. The other approach is to also change the directions
of the velocities as well. If we have an estimate of the variance-matrix of 𝜽
under 𝜋, say 𝚺, then one choice is to choose the p𝑖s to be the eigenvectors
of 𝚺.

5.5 Extensions 185

To see why this is a natural choice, consider 𝜋(𝜽) being a Gaussian
distribution with variance 𝚺. Centre this distribution so it has a mean of 0.
If we use p1, . . . , p𝑑 as our basis for the velocities, and p =

∑𝑑
𝑖=1 𝑎𝑖p𝑖, then

the rate at which we flip 𝑎𝑖 is equal to

max{0,−𝑎𝑖p⊤𝑖 ∇ log 𝜋(𝜽 + p𝑡)} = max
{
0,−𝑎𝑖p⊤𝑖

(
−𝚺−1(𝜽 + p𝑡)

)}
.

But using that p𝑖 is an eigenvector of 𝚺, and hence also of 𝚺−1, and if we
assume the corresponding eigenvalue of 𝚺 is 𝛾𝑖, we have that

−𝑎𝑖p⊤𝑖
(
−𝚺−1(𝜽 + p𝑡)

)
= 𝑎𝑖

1
𝛾𝑖

p⊤𝑖

(
𝜽 + 𝑡

𝑑∑︁
𝑗=1

𝑎 𝑗p 𝑗

)
𝑡 = 𝑎𝑖

1
𝛾𝑖

(
p⊤𝑖 𝜽 + 𝑎𝑖𝑡

)
.

In this case, the event rate does not depend on the velocity in other compo-
nents and essentially Zig–Zag will reduce to independent processes along
each component, p⊤𝑖 𝜽 , of 𝜽 .

A similar idea can be used to generalise the Bouncy Particle Sampler. It
is simplest to describe this for the case where the invariant distribution for
p is Gaussian, as the generalisation is to allow a non-identity covariance
matrix for this invariant distribution. In the following, we will assume the
invariant distribution is Gaussian with mean 0 and variance 𝚺.

As we change 𝚺, we have to change the reflection events of the sampler.
To see why, note that a key property of the reflection event of the standard
Bouncy Particle Sampler, wherein step (BPS2)

p′ = Rg(p), with g = ∇𝜽 log 𝜋(𝜽),

was that | |p′ | |22 = | |p| |22, so this transition does not change the density of the
state under 𝜋p. This is no longer the case if the variance of p under 𝜋p is
not a multiple of the identity.

So we need to generalise the reflection so that it depends on 𝚺. It turns
out that the appropriate reflection is

R𝚺
g (p) = p − 2g⊤p

(g⊤𝚺g)𝚺g.

Importantly, if p′ = R𝚺
g (p) for any g, then

p′⊤𝚺−1p′ = p⊤𝚺−1p,

so it does not change the density under a Gaussian with variance 𝚺. Fur-
thermore, we still have that if g = ∇ log 𝜋(𝜽) then

p′ · ∇ log 𝜋(𝜽) = −p · ∇ log 𝜋(𝜽),

which is the other key requirement of the transition needed for the validity

186 Continuous-Time MCMC

of the sampler. Using these two properties it is straightforward to show that
the Bouncy Particle Sampler with (BPS2) replaced by (BPS2’) below will
have 𝜋(𝜽)𝜋p(p) as its invariant distribution, where 𝜋p(p) is the density of
a Gaussian distribution with mean 0 and variance 𝚺.

(BPS2’) Transition at events. At an event with probability 1 − _r/_BPS(𝜽 , p),
reflect the velocity

p′ = R𝚺
g (p), with g = ∇𝜽 log 𝜋(𝜽);

otherwise sample a new velocity, p′ from a normal distribution with
mean 0 and variance 𝚺. The position is unchanged at an event.

As above, a natural choice of𝚺 to use in the distribution for the velocity is
to choose it to be an estimate of the variance of 𝜽 under 𝜋. Furthermore, for
both the Bouncy Particle Sampler and Zig–Zag one can relate the choice of
distribution on the velocity to running the canonical version of the PDMP
but after applying a linear reparameterisation to the random variable of
the distribution we wish to sample from. We will describe the link for the
Bouncy Particle Sampler, though a similar argument applies to other PDMP
samplers.

Consider the Bouncy Particle Sampler for (𝜽 , p) with target distribution
𝜋(𝜽) and a standard Gaussian distribution for p. For some invertible matrix
L define 𝝍 = L𝜽 , and consider the dynamics of the PDMP but viewed in
terms of 𝝍. If 𝜽 is drawn from 𝜋(𝜽), and 𝝍 = L𝜽 , then the density of 𝝍 is
𝜋𝝍 (𝝍) ∝ 𝜋(L−1𝝍), as the Jacobian of the transformation is constant. If we
consider derivatives then

𝜕 log 𝜋𝝍 (𝝍)
𝜕𝜓𝑖

=
𝜕 log 𝜋(L−1𝝍)

𝜕𝜓𝑖
=

𝑑∑︁
𝑗=1

𝜕 log 𝜋(L−1𝝍)
𝜕\ 𝑗

(
L−1)

𝑗𝑖
.

This is just the 𝑖th entry of L−⊤∇𝜽 log 𝜋(L−1𝝍), which gives that

∇𝝍𝜋𝝍 (𝝍) = L−⊤∇𝜽 log 𝜋(L−1𝝍). (5.18)

Now let us consider the dynamics of the Bouncy Particle Sampler in 𝝍
space. We will consider each aspect of the dynamics in turn:
Deterministic Dynamics: If we transform the constant velocity dynamics
into 𝝍 space we have

d𝝍
d𝑡

= L
d𝜽
d𝑡

= Lp,

so these are still constant velocity dynamics but with velocity w = Lp.

5.5 Extensions 187

Furthermore, if p has a Gaussian distribution with an identity covariance
matrix, then w is Gaussian with covariance LL⊤.

Rate of Bounce Events: If the current state is (𝜽 , p) then the rate of a
bounce event is max{0, p · ∇ log 𝜋(𝜽)}. Now

p · ∇ log 𝜋(𝜽) = p⊤∇ log 𝜋(𝜽) = w⊤(L−1)⊤∇ log 𝜋(L−1𝝍) = w⊤∇𝝍𝜋𝝍 (𝝍),

where we have transformed (𝜽 , p) to (𝝍,w) and used (5.18). This is the
rate for the Bouncy Particle Sampler targeting 𝜋𝝍 (𝝍).

Reflection at Bounce Events: If the current state is (𝜽 , p) then at a bounce
event the new velocity is

p′ = p − 2(p · ∇𝜽 log 𝜋(𝜽)) ∇𝜽 log 𝜋(𝜽)
(∇𝜽 log 𝜋(𝜽)⊤∇𝜽 log 𝜋(𝜽))1/2 .

So if we consider the velocity for the𝝍 process, w′ = Lp′, and use𝚺 = LL⊤,
this is

w′ = Lp − 2(p · ∇𝜽 log 𝜋(𝜽)) L∇𝜽 log 𝜋(𝜽)
(∇𝜽 log 𝜋(𝜽)⊤∇𝜽 log 𝜋(𝜽))1/2

= w − 2(w⊤L−𝑇∇𝜽 log 𝜋(L−1𝝍))

× 𝚺L−𝑇∇𝜽 log 𝜋(L−1𝝍)
(∇𝜽 log 𝜋(L−1𝝍)⊤L−1𝚺L−𝑇∇𝜽 log 𝜋(L−1𝝍))1/2

= w − 2(w⊤∇𝝍 log 𝜋𝝍 (𝝍))
𝚺∇𝝍 log 𝜋𝝍 (𝝍)

(∇𝝍 log 𝜋𝝍 (𝝍)⊤𝚺∇𝝍 log 𝜋𝝍 (𝝍))1/2
.

This is justR𝚺
g (w) with g = ∇ log𝝍 (𝝍), the reflection of the Bouncy Particle

Sampler with covariance matrix 𝚺.
Refresh Events: These events occur at a constant rate, which is unaffected

by the transformation to𝝍. At a refresh event, we simulate p from a standard
Gaussian, which corresponds to simulating w = Lp from a Gaussian with
covariance 𝚺 = LL⊤.

Thus the process in𝝍 space is a Bouncy Particle Sampler with covariance
matrix 𝚺 = LL⊤ for the velocity.

A second generalisation is to alter the constant velocity dynamics. This
has been suggested in particular as a way of generalising the Bouncy Par-
ticle Sampler with covariance matrix 𝚺 for the velocity, with the resulting
algorithm called the Boomerang Sampler (Bierkens et al., 2020), though
similar ideas also appear under the name of Hamiltonian-BPS in Vanetti
et al. (2017).

Consider a velocity model with marginal distribution such that log 𝜋p(p) =
−(1/2)p⊤𝚺−1p. Write log 𝜋(𝜽) = 𝑈 (𝜽) − (1/2) (𝜽 − 𝜽∗)⊤𝚺−1(𝜽 − 𝜽∗) for

188 Continuous-Time MCMC

some function 𝑈 (𝜽) and constant vector 𝜽∗. The idea is to have determin-
istic dynamics that move along contours of −(1/2) (𝜽 − 𝜽∗)⊤𝚺−1(𝜽 − 𝜽∗) −
(1/2)p⊤𝚺−1p in (𝜽 , p) space. Such dynamics are given by Hamiltonian
dynamics, which are tractable in this case, and are

d𝜽
d𝑡

= p,
dp
d𝑡

= 𝜽 − 𝜽∗.

The solution of these dynamics are 𝜽 𝑡 = 𝜽∗ + (𝜽0 − 𝜽∗) cos(𝑡) + p0 sin(𝑡)
and p𝑡 = p0 cos(𝑡) − (𝜽0 − 𝜽∗) sin(𝑡). The rate of bounce events for the
Boomerang Sampler is just max{0, p𝑡 · ∇𝑈 (𝜽 𝑡)}, with bounces as per the
Bouncy Particle Sampler when the velocity has covariance matrix 𝚺. As
before, we can also introduce refresh events.

If 𝑈 (𝜽) = 0, so we are targeting a Gaussian distribution for 𝜽 with
mean 𝜽∗ and covariance 𝚺, then this sampler just undergoes Hamiltonian
dynamics. In this case, a strictly positive refresh rate is needed to avoid the
sampler being reducible, and the resulting process is a form of randomised
Hamiltonian dynamics, that is HMC but with a random refresh time for the
velocity. For non-Gaussian targets, this sampler will have additional bounce
events, but the hope is that if the target is close to Gaussian with mean 𝜽∗

and covariance 𝚺, then the rate of bounce events will be much lower than
for the standard Bouncy Particle Sampler.

Care is needed with one aspect of simulating the Boomerang Sampler,
as the different dynamics require slightly different approaches to simulate
the event times. If the current state is (𝜽0, p0) then the rate until the next
event is now

_̃ (𝜽0 ,p0) (𝑡) = max{0, p𝑡 · ∇𝑈 (𝜽 𝑡)} = max{0,
(p0 cos(𝑡) + (𝜽0 − 𝜽∗) sin(𝑡)) · ∇𝑈 (𝜽∗ + (𝜽0 − 𝜽∗) cos(𝑡) + p0 sin(𝑡))},

where we have substituted in the definitions of p𝑡 and 𝜽 𝑡 . Bierkens et al.
(2020) give some general approaches to bounding this rate, which uses the
property that the deterministic dynamics of the Boomerang Sampler are
such that |𝜽 𝑡 − 𝜽∗ |2 + |p𝑡 |2 is a constant. To keep the notation simple, we
will show this for 𝜽∗ = 0, but the same argument applies more generally. In
this case

|𝜽 𝑡 |2 + |p𝑡 |2 = (𝜽0 cos(𝑡) + p0 sin(𝑡)) · (𝜽0 cos(𝑡) + p0 sin(𝑡))
+(p0 cos(𝑡) − 𝜽0 sin(𝑡)) · (p0 cos(𝑡) − 𝜽0 sin(𝑡))

= |𝜽0 |2 cos2(𝑡) + |p0 |2 sin2(𝑡) + 2𝜽0 · p0 sin(𝑡) cos(𝑡)
+|p0 | cos2(𝑡) + |𝜽0 |2 sin(𝑡) − 2𝜽0 · p0 sin(𝑡) cos(𝑡)

= |𝜽0 |2(sin2(𝑡) + cos2(𝑡) + |p0 |2(sin2(𝑡) + cos2(𝑡)) = |𝜽0 |2 + |p0 |2.

5.5 Extensions 189

How is this useful? This property means that we can bound the distance
from 𝜽∗ that the current deterministic trajectory can take. Thus if we can
bound the Hessian of 𝑈, which is the derivative of ∇𝑈, then this enables
us to bound ∇𝑈 for the current trajectory based on the value of ∇𝑈 at 𝜽∗
plus a term that depends on the bound on the Hessian and the distance
the trajectory can be from 𝜽∗. One such bound, that we will use below
is that if the spectral norm of the Hessian of 𝑈 is bounded by 𝑀 , so
that ∥∇2𝑈 (𝜽)x∥ ≤ 𝑀 ∥x∥2 for any vector x with ∥ · ∥ denoting Euclidean
distance, then for the current deterministic trajectory, we have a constant
bound:

_(𝜽 𝑡 , p𝑡) ≤ |∇𝑈 (𝜽∗) | (|𝜽0−𝜽∗ |2+ |p0 |2)1/2+
1
2
𝑀 (|𝜽0−𝜽∗ |2+ |p0 |2). (5.19)

Example: Boomerang for Logistic Regression
As an example, consider again the logistic regression model. There are two
natural choices for the centring value and covariance of the Boomerang
Sampler. The first is to set them to the prior mean and covariance, 𝜽∗ = 0
and 𝚺 = 𝚺𝜽 . The second is to estimate the mode of log 𝜋, �̂�𝑀𝐴𝑃 say, and
the inverse of the Hessian of − log 𝜋 at �̂�𝑀𝐴𝑃. We will compare these two
options.

If we set them to the prior values then𝑈 (𝜽) is minus the log-likelihood.
As described in Section 5.4.1 we can bound the Hessian of minus the
log-likelihood by (1/4)X⊤X, where X is the 𝑁 × 𝑑 matrix of covariates.

What about if we set 𝜽∗ and 𝚺 based on the estimate of the mode of
log 𝜋 and the inverse of the Hessian of − log 𝜋 at the mode? Denoting the
log-likelihood of the logistic model by ℓ(𝜽;D), and the Hessian of minus
the log-likelihood by H(𝜽). This choice gives

𝑈 (𝜽) = −ℓ(𝜽;D) − 1
2
(𝜽 − �̂�𝑀𝐴𝑃)⊤H(�̂�𝑀𝐴𝑃) (𝜽 − �̂�𝑀𝐴𝑃),

where we have used the fact that the contribution from the prior will cancel.
Taking second derivatives, the Hessian of this at 𝜽 will be the difference
between two matrices, H(𝜽) −H(�̂�𝑀𝐴𝑃). These matrices are both positive
semi-definite, with spectral norm bounded by (1/4)X⊤X, thus the spectral
norm of the difference is also bounced by (1/4)X⊤X. This is because the
eigenvalues of H(𝜽) are bounded between 0 and 𝑀 for some constant 𝑀 ,
and the eigenvalues of −H(�̂�𝑀𝐴𝑃) are bounded between −𝑀 and 0, so the
eigenvalues of H(𝜽) −H(�̂�𝑀𝐴𝑃) are between −𝑀 and 𝑀 .

Thus we can implement the Boomerang Sampler for both choices of 𝜽∗
and 𝚺 with the constant bound given by (5.19) using the same value for

190 Continuous-Time MCMC

0.5 0.0 0.5 1.0
θ (1)

0.5

0.0

0.5

1.0

θ
(2

)

0.5 0.0 0.5 1.0
θ (1)

0.5

0.0

0.5

1.0

θ
(2

)

Figure 5.8 Trace plots of the Boomerang Sampler for the
posterior of a logistic regression model. The heat plot shows the
contours of the posterior. Example realisation when 𝚺 = 𝚺𝜽 and
𝜽∗ is the prior mean (left) and when 𝜽∗ is an estimate of the
posterior mode and 𝚺 is based on the Hessian of log 𝜋 at 𝜽∗
(right).

𝑀 . The bounds will differ though due to the different values for 𝜽∗ and
𝑈 and hence for |∇𝑈 (𝜽∗) |. In particular, this will be 0 for 𝜽∗ = �̂�𝑀𝐴𝑃, or
at least close to 0 if we have a reasonable approximation for the mode of
log 𝜋. Example realisations for the two samplers are shown in Figure 5.8,
for data with 𝑁 = 100 and 𝑑 = 2 and with a prior covariance of 2 for each
component of 𝜽 .

The main difference between the Boomerang Sampler and the previous
PDMP samplers is most obviously seen in the right-hand plot of Figure 5.8,
as we have elliptical trajectories between events. This is reminiscent of the
trajectories for HMC. For the left-hand plot, where Σ is large compared to
the curvature of the posterior, the contours are elliptical but with larger radii
and thus the output looks more similar to our previous PDMP samplers. In
this example, one of the main advantages of basing 𝜽∗ and Σ on the mode
and Hessian at the mode is that the computational cost of simulating the
Boomerang Sampler is lower. Both have been simulated with roughly the
same length of trajectory, but using the prior values has required proposing
four times as many events. This is because of the looser bound on the event
rate that we have in this case.

5.6 Chapter Notes 191

5.6 Chapter Notes
The initial idea of using PDMP processes for sampling comes from the
physical sciences, see for example Turitsyn et al. (2011), Peters and de
With (2012) and Michel et al. (2014). These were introduced into statistics
by Bouchard-Côté et al. (2018) and Bierkens and Roberts (2017), and one of
the early papers to describe the link to PDMPs was Fearnhead et al. (2018).
The latter paper also gives an example where avoiding refresh events in the
Bouncy Particle Sampler can lead to slow mixing. How the subsampling
ideas of Section 5.4.3 extend to samplers other than the Zig–Zag Sampler
is also discussed in Fearnhead et al. (2018), with related ideas for the local
Bouncy Particle Sampler in Bouchard-Côté et al. (2018).

As well as the PDMP samplers mentioned in the chapter, there have
been various papers suggesting extensions to PDMP methods. For example
Vanetti et al. (2017), Wu and Robert (2017) and Michel et al. (2020). The
continuous-time methods can be related to discrete-time MCMC methods
such as reflective slice sampling (Neal, 2003) and the Discrete Bouncy
Particle Sampler (Sherlock and Thiery, 2022).

The theoretical analysis of PDMP samplers has been active, including
showing ergodicity (Deligiannidis et al., 2019; Bierkens et al., 2019a) and
exploring limiting behaviour of the Bouncy Particle Sampler and the Zig
Zag sampler (Deligiannidis et al., 2021; Bierkens et al., 2022; Andrieu et al.,
2021). Particularly strong results are available for the one-dimensional case
(Bierkens and Duncan, 2017; Bierkens and Verduyn Lunel, 2022).

Complementary results on scaling of the Discrete Bouncy Particle Sam-
pler to those shown in Section 5.3.3 are given in Sherlock and Thiery
(2022), which shows similar scaling to the Bouncy Particle Sampler and
also provides supporting theory to help choose the refresh rate.

6

Assessing and Improving MCMC

The development of more sophisticated and, especially, approximate sam-
pling algorithms, aimed at improving scalability in one or more of the senses
already discussed in this book, raises important considerations about how
a suitable algorithm should be selected for a given task, how its tuning
parameters should be determined, and how its convergence should be as-
sessed. This chapter presents recent solutions to the above problems, whose
starting point is to derive explicit upper bounds on an appropriate dis-
tance between the posterior and the approximation produced by MCMC.
Further, we explain how these same tools can be adapted to provide pow-
erful post-processing methods that can be used retrospectively to improve
approximations produced using scalable MCMC.

6.1 Diagnostics for MCMC

The approximations provided by MCMC are only useful if we can be con-
fident that the samples collectively form a reasonable approximation to
the intended target. This, however, appears to be a circular requirement –
how can we verify that MCMC has worked without access to the limiting
target to check? Several diagnostics have emerged as pragmatic solutions,
enabling a practitioner to detect certain failure modes of MCMC. In particu-
lar, we highlight convergence diagnostics, which aim to determine whether
the Markov chain has converged to some stationary distribution, and bias
diagnostics, which aim to detect whether the stationary distribution of the
Markov chain is indeed the target distribution of interest. For context, both
classes of diagnostic will be briefly discussed. Throughout this Chapter,
we shall restrict attention to distributions defined on R𝑑 for simplicity of
presentation.

192

6.1 Diagnostics for MCMC 193

6.1.1 Convergence Diagnostics
To limit the scope, here we describe the convergence diagnostics that are
most widely used. The Gelman–Rubin diagnostic is based on realisations
of 𝐿 independent Markov chains, each of length 𝑛, where practical consid-
erations typically restrict 𝐿 to be a small number, such as 3, 4 or 5. For
a univariate target distribution, the Gelman–Rubin diagnostic is defined as
the square root of the ratio of two estimators of the variance 𝜎2 of the target
distribution

𝑅 :=
√︂
�̂�2

�̂�2 , (6.1)

where �̂�2 is the (arithmetic) mean of the sample variances 𝑠2
𝑙

along the 𝐿
sample paths,

�̂�2 :=
1
𝐿

𝐿∑︁
𝑙=1

𝑠2
𝑙 ,

which typically provides an underestimate of 𝜎2, since it is possible that
one or more of the 𝐿 chains has not explored the posterior well, while �̂�2

is constructed as

�̂�2 :=
𝑛 − 1
𝑛

�̂�2 + 1
𝐿 − 1

𝐿∑︁
𝑙=1

(
𝑚𝑙 −

1
𝐿

𝐿∑︁
𝑙′=1

𝑚𝑙′

)2

, (6.2)

where 𝑚𝑙 is the sample mean from the 𝑙th sample path, which typically
provides an overestimate of the target variance. Indeed, the second term
in (6.2) is an estimate of the asymptotic variance of the sample mean
of the Markov chain, which is typically larger than the variance 𝜎2

𝑛
we

would obtain if our samples were truly independent; recall the discussion
of effective samples sizes and (1.15) from Chapter 1. For an ergodic Markov
chain, 𝑅 converges to 1 as 𝑛 → ∞. In practice, it is common to discard
a burn-in period of length 𝑛

2 , where 𝑛 is the smallest integer for which
𝑅 < 1 + 𝛿, where 𝛿 is a suitable threshold. The somewhat arbitrary choices
of 𝛿 = 0.1 and 𝛿 = 0.01 are often used.

Convergence diagnostics are widely and successfully used. However,
it remains the case that the performance of 𝑅 and related convergence
diagnostics depends strongly on how the independent realisations of MCMC
are initialised. Indeed, consider the task of generating approximate samples
from the mixture distribution

𝜋(𝑥) = 1
2

N(𝑥;−2, 0.52) + 1
2

N(𝑥; 2, 0.52). (6.3)

194 Assessing and Improving MCMC

To avoid the situation where all chains are confined to the same local
high-probability region due to chance, standard practice is to initialise the
Markov chains by sampling their initial state from a distribution that is
over-dispersed with respect to the target. Thus, we may initialise Markov
chains by sampling from, say, N(0, 52). Running 𝐿 = 3 chains of length
𝑛 = 1000 leads to the two sets of sample paths shown in Figure 6.1. In both
sets of sample paths, the length 𝑛 of the sample paths was insufficient to
enable the Markov chains to explore both components of 𝜋, and each of the
chains remained in the component in which it was initialised. On the left
side of the figure, one of the sample paths is clearly qualitatively distinct
from the other two, since the Markov chains explored different components
of 𝜋, and the Gelman–Rubin diagnostic correctly detects that the Markov
chains have not converged. Unfortunately, on the right side of the figure, it
so happened that each of the chains was initialised in the high probability
region of the same component. As a result, the Gelman–Rubin diagnostic
appears to be converging to values below the commonly used thresholds
𝛿 = 0.1 and 𝛿 = 0.01, and fails to detect that the Markov chains have
explored only one of the components of 𝜋.

What went wrong with the convergence diagnostic (6.1) in this example?
Well, the Markov processes exhibited a form of quasi-stationarity; transi-
tions from one component of the mixture to the other is a rare event, and
conditional on such a transition not occurring the behaviour of the Markov
chains is arguably excellent. The rarity of transitions between components
makes it fundamentally difficult to distinguish between quasi-stationarity
and convergence of a Markov chain when the sample paths are confined
to the same component; some knowledge of the invariant distribution 𝜋 is
required. This motivates the discussion of an alternative diagnostic which
does indeed leverage information about 𝜋, a bias diagnostic, which we
describe next.

6.1.2 Bias Diagnostics

Even in favourable situations, such as the case of a uni-modal target, con-
vergence diagnostics do not provide a guarantee that Markov chain samples
constitute a faithful approximation of the target. Indeed, convergence diag-
nostics are not capable of detecting bias in sampler output, for example as
introduced when using stochastic gradient methods (Chapter 3), or intro-
duced when a coding error has occurred. Instead, bias diagnostics can be

6.1 Diagnostics for MCMC 195

0 500 1000
iteration

2

0

2

x

0 500 1000
iteration

2

0

2

x

0 500 1000
iteration

10 4

10 3

10 2

10 1

100

101

R̂
−

1

0 500 1000
iteration

10 4

10 3

10 2

10 1

100

101

R̂
−

1

Figure 6.1 Convergence diagnostics for MCMC. Three
independent Markov chains were simulated to generate samples
from the Gaussian mixture target 𝜋 in (6.3). In the first scenario
(left panels) the chains explore different components of 𝜋, and the
Gelman–Rubin diagnostic 𝑅 correctly detects that the Markov
chains have not converged. In the second scenario (right panels)
the chains explore the same component of 𝜋, and the
Gelman–Rubin diagnostic does not detect that the Markov chains
have not converged. [Stars indicate the initial state of each Markov
chain. The density 𝜋 is shaded. Dotted lines indicate the two
commonly used thresholds 𝛿 = 0.1 and 0.01 for 𝑅 − 1.]

used to identify such situations, a simple example of which is

𝐵 :=

1
𝑛

𝑛∑︁
𝑘=1

(∇ log 𝜋) (𝑋𝑘)
 . (6.4)

196 Assessing and Improving MCMC

Provided that∇ log 𝜋 ∈ L1(𝜋), which we recall means that
∫
∥∇ log 𝜋∥ d𝜋 <

∞ from Section 1.1.1, from the strong law of large numbers for Markov
chains the series in (6.4) almost surely converges to the limit

∫
∇ log 𝜋 d𝜋 =

∫ (∇𝜋) (𝑥)
𝜋(𝑥) 𝜋(𝑥) d𝑥 =

∫
(∇𝜋) (𝑥) d𝑥 = 0

whenever the Markov chain is ergodic and 𝜋-invariant. The final equality
is integration by parts; a special case of Lemma 6.3 in the sequel. On
the other hand, just as the passing of a convergence diagnostic test does
not guarantee that the MCMC has converged, the convergence of (6.4) to
0 does not guarantee that the Markov chain preserves the correct target
distribution. Surprisingly, bias diagnostics are not widely used, at least
compared to convergence diagnostics, which may be due to (in our example)
the requirement to compute a gradient, or may simply be because they have
been historically overlooked.

Consider again the mixture distribution 𝜋 in (6.3) and suppose that, due
to a coding error, we have implemented a Markov chain whose stationary
distribution is N(`, 0.52). Running 𝐿 = 3 chains of length 𝑛 = 1000 leads
to the two sets of sample paths shown in Figure 6.2 for ` = 2 (left) and
` = 0 (right). In both sets of sample paths, the Gelman–Rubin convergence
diagnostic test is passed, despite the Markov chains failing to be 𝜋-invariant.
On the left side of the figure, the bias diagnostic (6.4) clearly does not
converge to zero, and thus the bias in the Markov chain output is detected.
Unfortunately, on the right side of the figure, the bias diagnostic appears to
be decreasing for all chains as the number 𝑛 of samples is increased, and
we do not diagnose the failure of MCMC.

What went wrong with the bias diagnostic (6.4) in this example? Well,
information about a finite-dimensional generalised moment

∫
∇ log 𝜋 da ∈

R𝑑 is insufficient to characterise a probability distribution; there are an in-
finitude of distributions a for which all 𝑑 components of this generalised mo-
ment are 0. This suggests a potential solution; find an infinite-dimensional
generalised moment that fully determines whether or not 𝜋 and a are equal.
Surprisingly, this can be achieved without needing to explicitly deal with an
infinite-dimensional generalised moment, due to the kernel trick from ma-
chine learning, which was introduced in Section 1.5.3 for finite-dimensional
inner-product spaces, and will now be explored in the infinite-dimensional
setting.

6.1 Diagnostics for MCMC 197

0 500 1000

2

0

2

x

0 500 1000

2

0

2

x

100 101 102 103

iteration

10 3

10 2

10 1

100

B̂

100 101 102 103

iteration

10 3

10 2

10 1

100

B̂

Figure 6.2 Bias diagnostics for MCMC. Three independent
biased Markov chains were simulated, so that the invariant
distribution differs from the Gaussian mixture target 𝜋 in (6.3). In
the first scenario (left panels) the chains explore a Gaussian
centred at 𝑥 = 2, and the bias diagnostic 𝐵 correctly detects that
the Markov chains have not converged. In the second scenario
(right panels) the chains explore a Gaussian target centred at
𝑥 = 0, and the bias diagnostic does not detect that the Markov
chains have not converged. [Stars indicate the initial state of each
Markov chain. The density 𝜋 is shaded.]

6.1.3 Improved Bias Diagnostics via the Kernel Trick
Though finite-dimensional bias diagnostics can be misled, the same may
not be true of a bias diagnostic that is infinite-dimensional. The aim of this
section is to indicate, at a high level, how such an infinite-dimensional bias

198 Assessing and Improving MCMC

diagnostic can be constructed. A more rigorous mathematical treatment is
then provided in Section 6.2.

Suppose that we are able to write down a countable set {𝜙1, 𝜙2, . . . } of
functions 𝜙 𝑗 : R𝑑 → R such that each of the moments

∫
𝜙 𝑗 (x)𝜋(x) dx of

𝜋 can be analytically evaluated; without loss of generality we may suppose
that each generalised moment of 𝜋 is equal to 0 (since if not, we may simply
redefine 𝜙 𝑗 as 𝜙 𝑗 −

∫
𝜙 𝑗 (x)𝜋(x) dx). We have already seen examples of

functions 𝜙 𝑗 that can be used; we could take

𝜙 𝑗 (x) =
𝜕 log 𝜋(x)
𝜕𝑥 𝑗

for 𝑗 = 1, . . . , 𝑑. More generally, we can use the generator of any 𝜋-invariant
Markov process to construct such functions; the details are deferred to
Section 6.2. Assuming that the 𝜙 𝑗 are linearly independent and appropriately
normalised, we can construct a Hilbert space

H =

{
ℎ =

∞∑︁
𝑗=1

𝑐 𝑗𝜙 𝑗 :
∞∑︁
𝑗=1

𝑐2
𝑗 < ∞

}
whose elements are functions ℎ : R𝑑 → R, equipped with an inner product
⟨ℎ, ℎ′⟩H =

∑∞
𝑗=1 𝑐 𝑗𝑐

′
𝑗 , where here ℎ =

∑∞
𝑗=1 𝑐 𝑗𝜙 𝑗 and ℎ′ =

∑∞
𝑗=1 𝑐

′
𝑗𝜙 𝑗 . The

induced norm is ∥ℎ∥H := ⟨ℎ, ℎ⟩1/2H . By picking elements from this Hilbert
space we can construct an infinitude of bias diagnostics, and the question
is then which diagnostic to pick?

One solution is to adopt an adversarial perspective, where we select an
element ℎ ∈ H that maximally discriminates between 𝜋 and the empirical
approximation to 𝜋 produced from MCMC. The bias diagnostic obtained
in this way can be written as

𝐵 := sup
∥ℎ ∥H ≤1

�����1𝑛 𝑛∑︁
𝑘=1

ℎ(X𝑘)
����� ,

where the supremum is taken over the unit ball of H , to ensure that the
supremum is computed over a bounded set. Further re-writing in terms of
the basis functions, we have

𝐵 := sup

{�����1𝑛 𝑛∑︁
𝑘=1

∞∑︁
𝑗=1

𝑐 𝑗𝜙 𝑗 (X𝑘)
����� :

∞∑︁
𝑗=1

𝑐2
𝑗 ≤ 1

}
, (6.5)

whence we see the maximisation is equivalent to finding the point c on the
surface of the (infinite-dimensional) unit hypersphere that maximises the dot
product with the (infinite-dimensional) vector c′ with 𝑐′𝑗 =

1
𝑛

∑𝑛
𝑘=1 𝜙 𝑗 (X𝑘).

6.1 Diagnostics for MCMC 199

The solution of this maximisation problem is to align c to c′, and upon
properly normalising we obtain

𝑐 𝑗 =

1
𝑛

∑𝑛
𝑘=1 𝜙 𝑗 (X𝑘)√︃∑∞

𝑗′=1
(1
𝑛

∑𝑛
𝑘′=1 𝜙 𝑗′ (X𝑘′)

)2
.

Inserting this expression back into (6.5) and rearranging, we obtain the
explicit bias diagnostic

𝐵 =

√√√
1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑘′=1

(
∞∑︁
𝑗=1

𝜙 𝑗 (X𝑘)𝜙 𝑗 (X𝑘′)
)
.

At this point one can raise a reasonable objection that evaluating 𝐵 appears
to require an infinite computational budget, due to the summation over the
functions 𝜙 𝑗 . Remarkably, there are situations where such infinite series
admit closed-form analytic expressions

k𝜋 (x, x′) :=
∞∑︁
𝑗=1

𝜙 𝑗 (x)𝜙 𝑗 (x′),

a situation known in machine learning as the kernel trick. See Section 1.5 for
a primer on the kernel trick. Provided that we have access to a kernel trick,
which of course depends on the precise choice we make for the functions
𝜙 𝑗 to ensure that

∫
𝜙 𝑗 (x)𝜋(x) dx = 0, we can hope to obtain a closed-form

expression for the bias diagnostic (6.5), namely

𝐵 =

√√
1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑘′=1

k𝜋 (X𝑘 ,X𝑘′). (6.6)

One would hope that (6.6) converges to 0 as 𝑛 → ∞ if and only if the
Markov chain is 𝜋-invariant. It turns out that such an idea can be made to
work, as we will explain in Section 6.2.

To summarise, we have seen that both convergence diagnostics and con-
ventional finite-dimensional bias diagnostics can provide a useful practical
tool to detect the failure of MCMC, but even taken together they are in-
sufficient to guarantee that output from the sampler provides an accurate
approximation of the intended target distribution. In the next section, we
turn our attention to the construction of infinite-dimensional bias diagnos-
tics, of the form (6.6), which attempt to solve the problem of assessing
MCMC output by establishing explicit upper bounds on an appropriate dis-
tance between the posterior and the approximation produced by MCMC in
terms of diagnostics of the form (6.6).

200 Assessing and Improving MCMC

6.2 Convergence Bounds for MCMC

In contrast to convergence diagnostics and conventional finite-dimensional
bias diagnostics, which may fail to detect instances where MCMC has failed,
the aim of this section is to seek explicit and computable upper bounds on
the error between the MCMC output and the target distribution. This topic
has received considerable recent interest following the pioneering work of
Gorham and Mackey (2015). To set the scene, we first explain how the use of
a suitable diffusion process enables explicit bounds on integral probability
metrics, focusing on the Wasserstein-1 metric for clarity in Sections 6.2.1
and 6.2.2. However, the Wasserstein-1 metric is not favourable for compu-
tation in this context, and we instead consider integral probability metrics
based on reproducing kernel Hilbert spaces in Section 6.2.3, noting that the
associated kernel Stein discrepancies can also provide valid convergence
bounds in Section 6.2.4. Lastly, in Section 6.2.5 we connect kernel Stein
discrepancies to the stochastic gradient methods from Chapter 3.

6.2.1 Bounds on Integral Probability Metrics
Our aim here is to arrive at an explicit and computable upper bound on
an appropriate metric between the target distribution 𝜋 and the empirical
distribution produced by MCMC. Let P(R𝑑) denote the set of probability
distributions on R𝑑 and consider a metric d : P(R𝑑) × P(R𝑑) → [0,∞].
As a useful convention, we have extended the range of a metric to include
the value ∞, to avoid the need to specify the subset of distributions on
which the metric is defined. Let 𝜋 ∈ P(R𝑑) be the distributional target
of MCMC. For our theoretical development, we will now introduce an
auxiliary discrete time ergodic Markov chain, which need not be related to
the Markov process(es) underpinning the MCMC method(s) being assessed.
The role of this auxiliary chain is limited to being a theoretical device in
what follows, and we denote its transition kernel as 𝑇𝜋 , meaning that 𝑇𝜋a is
the distribution after one step of the auxiliary Markov chain initialised from
X0 ∼ a. This auxiliary chain is required to satisfy the contraction property

d(𝑇𝜋𝜋, 𝑇𝜋a) ≤ 𝜌 d(𝜋, a) (6.7)

for some 𝜌 ∈ [0, 1) and all a ∈ P(R𝑑). From the triangle inequality,
d(𝜋, a) ≤ d(𝜋, 𝑇𝜋a)+d(𝑇𝜋a, a), combined with the contraction d(𝜋, 𝑇𝜋a) =
d(𝑇𝜋𝜋, 𝑇𝜋a) ≤ 𝜌 d(𝜋, a), it follows that (1 − 𝜌)d(𝜋, a) ≤ d(𝑇𝜋a, a). The

6.2 Convergence Bounds for MCMC 201

discrepancy

𝐷 𝜋 (a) :=
1

1 − 𝜌 d(𝑇𝜋a, a)

therefore constitutes an upper bound on the metric d(𝜋, a), which could in
principle be used to quantify how well a given distribution a approximates 𝜋
in situations where we do not have direct access to 𝜋, but where the auxiliary
Markov chain can be simulated. Further, since d is a metric and the Markov
chain has a unique invariant distribution, 𝐷 𝜋 (a) = 0 if and only if a = 𝜋.
An ideal scenario would be a fast mixing auxiliary Markov chain, so that
𝜌 ≪ 1, 𝑇𝜋a ≈ 𝜋, and 𝐷 𝜋 (a) ≈ d(𝜋, a). On the other hand, if the auxiliary
Markov chain mixes slowly then the values taken by the discrepancy could
fail to provide a meaningful indication of whether or not a is an accurate
approximation to 𝜋. The utility of this upper bound therefore depends on
the mixing properties of the auxiliary Markov chain on which it is based.

To move towards a computable bound, let us suppose that d is an integral
probability metric, meaning that for any 𝜋, a ∈ P(R𝑑)

d(𝜋, a) = sup
𝑔∈G

∫
𝑔(x) 𝜋(dx) −

∫
𝑔(x) da(x) (6.8)

for a suitable symmetric set1 of test functions G. Introducing the linear
operator

(𝐿 𝜋𝑔) (·) =
∫

𝑔(x′)𝑇𝜋 (·, dx′) − 𝑔(·),

and observing that∫
(𝐿 𝜋𝑔) (x) da(x) =

∫
𝑔(x′)𝑇𝜋 (x, dx′) da(x) −

∫
𝑔(x) da(x)

=

∫
𝑔(x) d𝑇𝜋a(x) −

∫
𝑔(x) da(x),

the discrepancy can be expressed as

𝐷 𝜋 (a) =
1

1 − 𝜌 sup
𝑔∈G

∫
(𝐿 𝜋𝑔) (x) da(x). (6.9)

However, to actually evaluate this discrepancy we are required to compute
expressions involving 𝐿 𝜋 , which in effect requires simulating all possi-
ble realisations of one step of the auxiliary Markov chain, and is there-
fore intractable in general. To circumvent this issue, we will move from a

1 The set G is symmetric if −𝑔 ∈ G whenever 𝑔 ∈ G; this allows us to avoid taking
absolute values in the definition of the integral probability metric.

202 Assessing and Improving MCMC

discrete-time auxiliary Markov chain to a continuous-time auxiliary Markov
process, with time 𝑡 transition kernel 𝑇 𝑡𝜋 and associated linear operator 𝐿𝑡𝜋
and discrepancy 𝐷𝑡𝜋 . The contraction property (6.7) in this case reads

d(𝑇 𝑡𝜋𝜋, 𝑇 𝑡𝜋a) ≤ 𝜌𝑡 d(𝜋, a). (6.10)

Considering the 𝑡 ↓ 0 limit we may, if the auxiliary Markov process mixes
rapidly enough, obtain an expression for the discrepancy in terms of the
generatorL𝜋 of the auxiliary Markov process, which we recall from Section
5.2.3 is defined through its action on suitably regular test functions 𝑔 : R𝑑 →
R as

(L𝜋𝑔) (·) := lim
𝑡↓0

1
𝑡
𝐿𝑡𝜋𝑔(·).

Indeed, assume that 𝜌𝑡 = 𝑒−𝑐𝑡 for some 𝑐 > 0. Then, in a purely formal
manipulation,

𝐷 𝜋 (a) := lim
𝑡↓0

𝐷𝑡𝜋 (a) (6.11)

= sup
𝑔∈G

∫
lim
𝑡↓0

1
1 − 𝜌𝑡

(𝐿𝑡𝜋𝑔) (x) da(x) = 1
𝑐

sup
𝑔∈G

∫
(L𝜋𝑔) (x) da(x),

where the final step uses the definition of the generator L𝜋 and the fact that
𝑒−𝑐𝑡 = 1 − 𝑐𝑡 + 𝑜(𝑡) when 𝑡 is small. Intriguingly, this form of discrepancy
may be computable, up to the rate constant 𝑐, which will be unknown in
general. The remaining challenges appear to be the selection of a suitable
auxiliary Markov process, for which the contraction property (6.10) is
satisfied, and the solution of the optimisation problem over G. These issues
are addressed, respectively, in Sections 6.2.2 and 6.2.3.

Remark (Stein discrepancies) The discrepancy that we have introduced
in (6.11) is an instance of Stein discrepancy, as defined in the pioneering
work of Gorham and Mackey (2015). A Stein discrepancy refers to any
discrepancy of the form

sup
𝑔∈G′

∫
(A𝜋𝑔) (x) da (6.12)

where the the Stein operator A𝜋 and the Stein class G ′ are selected in such
a way that (6.12) is zero if and only if 𝜋 and a are equal. The concept of
a Stein discrepancy is more general than the discrepancy 𝐷 𝜋 (a) we have
constructed, since the Stein operator A𝜋 need not arise from considera-
tion of a continuous-time Markov process; see for example the review of
Anastasiou et al. (2023).

6.2 Convergence Bounds for MCMC 203

6.2.2 Choice of Auxiliary Markov Process
To make this argument useful we require a metric d and an auxiliary
continuous-time Markov process for which the contraction property (6.10)
is satisfied. For the auxiliary Markov process, we will consider the over-
damped Langevin diffusion from Section 1.4:

dX𝑡 = ∇ log 𝜋(X𝑡) d𝑡 +
√

2 dW𝑡 (6.13)

whose infinitesimal generator is the second order differential operator
(L𝜋𝑔) (x) = (Δ𝑔) (x)+⟨(∇ log 𝜋) (x), (∇𝑔) (x)⟩, whereΔ denotes the Lapla-
cian differential operator for R𝑑 . To simplify the presentation, we initially
make the assumption that 𝜋 is strongly log-concave, meaning that (3.18)
holds for some 𝑙 > 0, and we recall that a sufficient condition for strong
log-concavity is that −∇∇ log 𝜋(x) ≻ 𝜖I𝑑 for some 𝜖 > 0 and all x ∈ R𝑑 ,
where ∇∇ denotes the Hessian differential operator and the notation A ≻ B
is used to mean that A − B is a symmetric positive definite matrix. This
assumption will be relaxed in Section 6.2.4. Let 𝐶𝑠 (R𝑑 ,R𝑝) denote the set
of functions 𝑓 : R𝑑 → R𝑝 for which continuous derivatives exist of orders
up to 𝑠 ∈ {0, 1, . . . } ∪ {∞}. For 𝑔 ∈ 𝐶0(R𝑑 ,R𝑝), let

𝑀1(𝑔) := sup
x,x′∈R𝑑

x≠x′

∥𝑔(x) − 𝑔(x′)∥
∥x − x′∥ (6.14)

denote its (possibly infinite) Lipschitz constant. Recall that a function 𝑔
is called Lipschitz whenever 𝑀1(𝑔) < ∞. The following is a well-known
contraction result for the overdamped Langevin diffusion, whose proof can
be found in e.g. von Renesse and Sturm (2005), or see Remark 1 in Eberle
(2016):

Theorem 6.1 (Contraction of the overdamped Langevin diffusion) Let 𝜋
be strongly log-concave and let ∇ log 𝜋 be Lipschitz. Then the overdamped
Langevin diffusion (6.13) satisfies the contraction property (6.10) in the
Wasserstein-1 metric

d𝑊1 (𝜋, a) := sup
𝑔∈𝐶0 (R𝑑 ,R)
𝑀1 (𝑔) ≤1

∫
𝑔(x) d𝜋(x) −

∫
𝑔(x) da(x) (6.15)

with 𝜌𝑡 = 𝑒−𝑐𝑡 for some 𝑐 > 0 and all 𝑡 ∈ [0,∞).

The infinitesimal generator L𝜋 of the overdamped Langevin diffusion
requires∇𝑔 andΔ𝑔 to exist, but the Wasserstein-1 integral probability metric
contains non-differentiable functions in the test function setG. This appears
to prevent us from running the formal argument in (6.11). However, it turns

204 Assessing and Improving MCMC

out that we may, without loss of generality, impose additional smoothness
on the Wasserstein-1 test function set:

Lemma 6.2 (Smoother test functions for Wasserstein-1) For 𝜋, a ∈ P(R𝑑),

d𝑊1 (𝜋, a) = sup
𝑔∈𝐶∞ (R𝑑 ,R)
𝑀1 (𝑔) ≤1

∫
𝑔(x) d𝜋(x) −

∫
𝑔(x) da(x). (6.16)

Proof Since the supremum is being computed over a subset of the test
functions in (6.15), it is immediate that the right-hand side of (6.16) is
upper-bounded by d𝑊1 (𝜋, a). To prove the corresponding lower bound,
let 𝜖 ∈ (0, 1). From the definition of d𝑊1 in (6.15), there exists 𝑔𝜖 with
𝑀1(𝑔𝜖) ≤ 1 such that

∫
𝑔𝜖 (x)d𝜋(x) −

∫
𝑔𝜖 (x)da(x) > d𝑊1 (𝜋, a) − 𝜖 .

Let 𝛿 > 0 and Z ∼ N(0, I𝑑). Set 𝑔𝜖 , 𝛿 (x) = E[𝑔𝜖 (x + 𝛿Z)]. Then 𝑔𝜖 , 𝛿 ∈
𝐶∞(R𝑑 ,R) and the Lipschitz constant of 𝑔𝜖 , 𝛿 is not greater than that of 𝑔𝜖 ,
since for all x, x′ ∈ R𝑑 ,

|𝑔𝜖 , 𝛿 (x) − 𝑔𝜖 , 𝛿 (x′) | = |E[𝑔𝜖 (x + 𝛿Z) − 𝑔𝜖 (x′ + 𝛿Z)] |
≤ 𝑀1(𝑔𝜖)∥x − x′∥.

Thus 𝑔𝜖 , 𝛿 is an element of the test set over which the supremum is computed
on the right hand side of (6.16). From

|𝑔𝜖 , 𝛿 (x) − 𝑔𝜖 (x) | = |E[𝑔𝜖 (x + 𝛿Z) − 𝑔𝜖 (x)] | ≤ 𝛿E[∥Z∥]𝑀1(𝑔𝜖), (6.17)

it follows that 𝑔𝜖 , 𝛿 distinguishes between 𝜋 and a almost as well as 𝑔𝜖 , in
the sense that∫

𝑔𝜖 , 𝛿 (x) d𝜋(x) −
∫

𝑔𝜖 , 𝛿 (x) da(x)

≥
∫

𝑔𝜖 (x) d𝜋(x) −
∫

𝑔𝜖 (x) da(x) − 2𝛿E[∥Z∥]𝑀1(𝑔𝜖)

> {d𝑊1 (𝜋, a) − 𝜖 − 2𝛿E[∥Z∥]},

which can be made arbitrarily close to d𝑊1 (𝜋, a) by taking 𝜖, 𝛿 → 0. Thus
the supremum in (6.16) coincides with d𝑊1 (𝜋, a), as claimed. □

To summarise, our formal argument has led to a bound

𝐷 𝜋 (a) =
1
𝑐

sup
𝑔∈𝐶∞ (R𝑑 ,R)
𝑀1 (𝑔) ≤1

∫
Δ𝑔(x) + ⟨∇ log 𝜋(x),∇𝑔(x)⟩ da(x) (6.18)

on the Wasserstein-1 distance between 𝜋 and a that holds in the strongly
log-concave setting of Theorem 6.1. The route to obtaining this bound

6.2 Convergence Bounds for MCMC 205

is instructive, and the lessons that we learned will be exploited in the
subsequent sections, but unfortunately, the evaluation of this discrepancy
requires a challenging optimisation problem to be solved. In the case where
a has finite support, the objective function depends on 𝑔 only through its
derivatives at the nodes in the support. This observation enabled Gorham
and Mackey (2015) to cast a closely related optimisation problem as a
collection of linear programmes, which then can be numerically solved.
The interested reader is referred to Gorham and Mackey (2015) for further
detail. However, the reliance on numerical methods to evaluate (6.18) limits
the utility of (6.18). Instead, we will proceed in Section 6.2.3 to consider
alternative sets of test functions for which the corresponding optimisation
problem can be analytically solved.

6.2.3 Kernel Stein Discrepancy
The aim of this section is to consider alternatives to the Wasserstein-1
distance, corresponding to alternative sets G of test functions defining the
integral probability metric (6.8), for which the optimisation problem in (6.9)
can be explicitly solved using the kernel trick advertised in Section 6.1.3.
However, the use of alternative metrics leads us to depart from the argument
of Section 6.2.1, which was based on the Wasserstein-1 contraction result
of Theorem 6.1, raising the question of whether the resulting discrepancy
is still a meaningful convergence bound. This question will be answered
positively in Section 6.2.4.

To simplify the discussion, we start by considering vector fields as test
functions, allowing us to reduce the order of the differential operators
involved. Thus, in the general notation of (6.12), we consider

(A𝜋g) (x) = (∇ · g) (x) + ⟨(∇ log 𝜋) (x), g(x)⟩, (6.19)

which is a first order differential operator and the elements g are now
vector fields g : R𝑑 → R𝑑 . The discussion in Section 6.2.2 corresponds
to g(x) = (∇𝑔) (x) for twice-differentiable 𝑔 : R𝑑 → R. Here, and in
the sequel, for ease of presentation, we have subsumed the constant factor
1/𝑐 into the definition of the vector fields g. Now, if we are to consider
alternative test functions g, the minimum requirement on g is that A𝜋g
integrates to 0 with respect to 𝜋, to ensure that the discrepancy we construct
vanishes when 𝜋 and a are equal. To this end, we have the following result:

Lemma 6.3 Let g : R𝑑 → R𝑑 satisfy g ∈ L1(𝜋) and A𝜋g ∈ L1(𝜋),
where A𝜋 is defined in (6.19). Then

∫
(A𝜋g) (x) d𝜋(x) = 0.

206 Assessing and Improving MCMC

Proof First notice that∫
(A𝜋g) (x) d𝜋(x) =

∫
1

𝜋(x) (∇ · (𝜋g)) (x) d𝜋(x) =
∫
(∇ · (𝜋g)) (x) dx,

which suggests using the divergence theorem to calculate this integral. To
avoid the explicit calculation of surface integrals, which would otherwise
be required when using the divergence theorem, we will first approximate
the vector field 𝜋g using another vector field with compact support. Let
𝜑𝑚 : R𝑑 → R denote the 𝑚th term in a sequence of compactly supported
functions with 𝜑𝑚(x) = 1 for ∥x∥ ≤ 𝑚, supx ∥∇𝜑𝑚(x)∥ < 𝑚−1 for each
𝑚 ∈ N, and 𝜑𝑚(x) ↑ 1 for each x ∈ R𝑑 . From the divergence theorem
applied to a vector field with compact support,

0 =

∫
(∇ · (𝜑𝑚𝜋g)) (x) dx

=

∫
⟨∇𝜑𝑚(x), (𝜋g) (x)⟩ dx +

∫
𝜑𝑚(x) (∇ · (𝜋g)) (x) dx.

Since 𝜑𝑚 ↑ 1 pointwise and ∇ · (𝜋g) ∈ L1(R𝑑), from the dominated
convergence theorem∫

𝜑𝑚(x) (∇ · (𝜋g)) (x) dx→
∫
(∇ · (𝜋g)) (x) dx.

On the other hand, using Cauchy–Schwarz and the assumption that 𝜋g ∈
L1(R𝑑),����∫ ⟨∇𝜑𝑚(x), (𝜋g) (x)⟩ dx

���� ≤ (
sup

x
∥∇𝜑𝑚(x)∥

) ∫
∥(𝜋g) (x)∥ dx→ 0.

Thus we have shown that∫
(A𝜋g) (x) d𝜋(x) =

∫
(∇ · (𝜋g)) (x) dx = 0,

as claimed. □

Our attention now turns to selecting a set of vector fields g for which
Lemma 6.3 holds and for which the optimisation problem in (6.18) can
be explicitly solved. One approach to this task is to use a matrix-valued
reproducing kernel, meaning a function K : R𝑑 × R𝑑 → R𝑑×𝑑 that is

1. transpose-symmetric; K(x, x′) = K(x′, x)⊤ for all x, x′ ∈ R𝑑
2. positive semi-definite;

𝑛∑︁
𝑘=1

𝑛∑︁
𝑘′=1

⟨c𝑘 ,K(x𝑘 , x𝑘′)c𝑘′⟩ ≥ 0

6.2 Convergence Bounds for MCMC 207

for all x1, . . . , x𝑛 ∈ R𝑑 , all c1, . . . , c𝑛 ∈ R𝑑 , and all 𝑛 ∈ N.

For clarity, we emphasise that ⟨c, c′⟩ = c⊤c′ is the usual Euclidean inner
product on R𝑛; in the sequel we will use subscripts to distinguish other
inner products as they are introduced. Let Kx = K(·, x), so that Kx : R𝑑 →
R𝑑×𝑑 is matrix-valued. For vector-valued functions g =

∑𝑛
𝑘=1 Kx𝑘

c𝑘 and
g′ =

∑𝑚
𝑙=1 Kx′

𝑙
c′
𝑙
, define an inner product

⟨g, g′⟩H(K) =
𝑛∑︁
𝑘=1

𝑚∑︁
𝑙=1

⟨c𝑘 ,K(x𝑘 , x′𝑙)c′𝑙⟩. (6.20)

There is a unique Hilbert space reproduced by K, denotedH(K); see Propo-
sition 2.1 of Carmeli et al. (2006). This space is characterised as

H(K) = span{Kxc : x, c ∈ R𝑑}

where here the closure is taken with respect to the inner product in (6.20).
The resulting Hilbert space satisfies the reproducing property

⟨g,Kxc⟩H(K) = ⟨g(x), c⟩

for all g ∈ H (K) and x, c ∈ R𝑑 , which is a particular instance of the kernel
trick discussed in Section 6.1.3. In what follows, it is convenient to overload
notation, such that the reproducing property becomes ⟨g,Kx⟩H(K) = g(x) in
an informal shorthand.

Assuming sufficient regularity that

𝐹a : H(K) → R

g ↦→
∫
(A𝜋g) (x) da(x)

is a bounded linear functional, the Riesz representation theorem tells us
that there is a unique element `a such that 𝐹a (·) = ⟨`a , ·⟩H(K) . Using our
reproducing property shorthand,

`a (x′) = ⟨`a ,Kx′⟩H(K) = 𝐹a (Kx′) =
∫
Ax
𝜋K(x, x′)da(x),

where the superscript inAx
𝜋 indicates the action ofA𝜋 on the x argument,

collapsing the matrix-valued function Kx into the vector-valued function
Ax
𝜋Kx. It follows that, if we consider the collection of vector fields g within

the unit ball ofH(K), our optimisation problem can be explicitly solved:

sup
∥g∥H(K) ≤1

∫
(A𝜋g) (x) da(x) = sup

∥g∥H(K) ≤1
⟨g, `a⟩H(K) = ∥`a ∥H(K) , (6.21)

208 Assessing and Improving MCMC

where, again from the reproducing property and the assumption that 𝐹a is
a bounded linear functional,

∥`a ∥2H(K) =
〈∫
Ax
𝜋Kx da(x),

∫
Ax′
𝜋Kx′ da(x′)

〉
H(K)

=

∬
Ax
𝜋Ax′

𝜋 ⟨Kx,Kx′⟩H(K) da(x)da(x′)

=

∬
Ax
𝜋Ax′

𝜋K(x, x′) da(x)da(x′).

It is convenient to introduce the shorthand 𝑘 𝜋 (x, x′) := Ax
𝜋Ax′

𝜋K(x, x′),
whence we obtain the discrepancy

D𝑘𝜋 (a) :=

√︄∬
𝑘 𝜋 (x, x′) da(x)da(x′), (6.22)

which is exactly of the form we sought in (6.6). This was termed a kernel
Stein discrepancy in Chwialkowski et al. (2016); Liu et al. (2016), due to
its dependence on a reproducing kernel and its characterisation as a Stein
discrepancy (6.1). A second consequence of (6.21) is that we can view the
kernel Stein discrepancy as a generalised moment

D𝑘𝜋 (a𝑛) =
1
𝑛

𝑛∑︁
𝑘=1

Ax
𝜋Kx

��
x=x𝑘

da(x)

H(K)

,

which takes a similar form to (6.4) from Section 6.1.2, albeit the generalised
moment can now be infinite-dimensional by virtue of taking values inH(K).
The function Ax

𝜋Kx is indeed a member of H(K) due to the differential
reproducing property (see Barp et al., 2022, Appendix C6). The kernel
Stein discrepancy has the potential to be a useful bias diagnostic, but first
we need to establish that it has our basic desired functionality, such as being
equal to 0 if and only if 𝜋 and a are identical. Clearly, then the choice of
kernel K will be important, so we address this point next.

One of the simplest forms of matrix-valued reproducing kernel is K(x, x′) =
k(x, x′)I𝑑 , where k is a scalar-valued reproducing kernel. This choice leads
to the explicit formula, due to Oates et al. (2017):

k𝜋 (x, x′) = ∇x · ∇x′k(x, x′) + ⟨∇x log 𝜋(x),∇x′k(x, x′)⟩
+ ⟨∇x′ log 𝜋(x′),∇xk(x, x′)⟩
+ ⟨∇x log 𝜋(x),∇x′ log 𝜋(x′)⟩k(x, x′) (6.23)

The function k𝜋 is automatically a scalar-valued reproducing kernel (see

6.2 Convergence Bounds for MCMC 209

Barp et al., 2022, Theorem 2.6), and k𝜋 (x, x′) = Ax
𝜋gx′ (x) where gx′ (x) :=

Ax′
𝜋K(x, x′) ∈ H (K). Thus, if the matrix-valued reproducing kernel K is

selected such that the conditions g ∈ L1(𝜋) and A𝜋g ∈ L1(𝜋) of Lemma
6.3 are satisfied for each g ∈ H (K), it follows that

∫
k𝜋 (x, x′)d𝜋(x) =∫

Ax
𝜋gx′ (x) d𝜋(x) = 0 for all x′ ∈ R𝑑 . Sufficient conditions for satisfying

the preconditions of Lemma 6.3 will shortly be discussed.
In the case where a =

∑𝑛
𝑘=1 𝑤𝑘𝛿x𝑘

is a discrete distribution, (6.22) reduces
to the double sum

Dk𝜋
(a) =

√√
𝑛∑︁
𝑘=1

𝑛∑︁
𝑘′=1

𝑤𝑘𝑤𝑘′k𝜋 (x𝑘 , x𝑘′). (6.24)

For the degenerate reproducing kernel with k(x, x′) = 1 for all x, x′ ∈ R𝑑
and uniform weights 𝑤𝑘 = 𝑛−1, the kernel Stein discrepancy in (6.24)
reduces to the simple form

Dk𝜋
(a) =

1
𝑛

𝑛∑︁
𝑘=1

∇x log 𝜋(x𝑘)
 ,

which is precisely the bias diagnostic from (6.4). In this case, H(K) is the
Hilbert space of constant vector fields on R𝑑 with norm ∥g∥H(K) = ∥𝜷∥
where g(x) = 𝜷 for all x ∈ R𝑑 , which is insufficiently rich to determine
whether or not 𝜋 and a are close or equal. However, with a suitable choice
of reproducing kernel the kernel Stein discrepancy can distinguish between
different distributions and indeed provide a form of convergence control, as
we explain in Section 6.2.4.

First, however, we must ensure the conditions of Lemma 6.3 are satisfied,
so that Dk𝜋

(a) = 0 when 𝜋 and a are equal. This can be achieved using the
following result:

Lemma 6.4 If K(x, x′) = k(x, x′)I𝑑 with k(x, x′) = 𝜙(x − x′) for some
𝜙 ∈ 𝐶2(R𝑑 ,R), then∇ log 𝜋 ∈ L1(𝜋) implies g ∈ L1(𝜋) andA𝜋g ∈ L1(𝜋)
for all g ∈ H (K).

Proof The reproducing property, followed by Cauchy–Schwarz, gives∫
∥g(x)∥ d𝜋(x) =

∫
∥⟨g,Kx⟩H(K) ∥ d𝜋(x)

≤ ∥g∥H(K)
∫ √︁

tr(K(x, x)) d𝜋(x) = ∥g∥H(K)
√︁
𝑑𝜙(0),

210 Assessing and Improving MCMC

which is finite for all g ∈ H (K). Similarly,∫
| (A𝜋g) (x) | d𝜋(x) =

∫
|⟨g,Ax

𝜋Kx⟩H(K) | d𝜋(x)

≤ ∥g∥H(K)
∫ √︁

Ax
𝜋Ax′

𝜋K(x, x′) |x′=x d𝜋(x).

Here the assumption 𝜙 ∈ 𝐶2(R𝑑 ,R) ensures the application of Ax
𝜋Ax′

𝜋 to
K(x, x′) is well-defined. Specialising to the translation-invariant reproduc-
ing kernel in the statement, we have

Ax
𝜋Ax′

𝜋K(x, x′) |x′=x = −(Δ𝜙) (0) + 𝜙(0)∥(∇ log 𝜋) (x)∥2 (6.25)

which shows thatA𝜋g ∈ L1(𝜋) whenever ∇ log 𝜋 ∈ L1(𝜋), and completes
the argument. □

The kernel Stein discrepancies we have just constructed are well-defined
and computable, but we have not yet addressed the question of if and how
the values of the discrepancy Dk𝜋

(a) are related to the closeness of 𝜋 and
a. Indeed, since we have used alternative test functions compared to (6.18),
we cannot expect Dk𝜋

(a) to provide an upper bound on the Wasserstein-1
distance between 𝜋 and a. The next section explains to what extent kernel
Stein discrepancies relate to the closeness of 𝜋 and a.

6.2.4 Convergence Control
The aim of this section is to establish whether kernel Stein discrepancies
can provide control over integral probability metrics. At the same time, we
will weaken the strong log-concavity assumption from Section 6.2.2 to an
assumption that 𝜋 is distantly dissipative, meaning that

lim inf
𝑟→∞

inf
x,x′∈R𝑑
∥x−x′ ∥=𝑟

{
− ⟨(∇ log 𝜋) (x) − (∇ log 𝜋) (x′), x − x′⟩

∥x − x′∥2

}
> 0,

for which Wasserstein-1 contraction of the overdamped Langevin diffusion
(6.13) can still be established (see Lindvall and Rogers, 1986; Eberle,
2016). The next Lemma demonstrates that distant dissipativity is indeed a
generalisation of strong log-concavity:

Lemma 6.5 If ∇ log 𝜋 is bounded on a compact set 𝑆 ⊂ R𝑑 and 𝜋 is
strongly log-concave on the boundary of and outside of the set 𝑆, then 𝜋 is
distantly dissipative.

6.2 Convergence Bounds for MCMC 211

Proof Let b(x) := (∇ log 𝜋) (x), let 𝑆 be the compact set in the state-
ment, and let int(𝑆) denote the interior of 𝑆. From the strong log-concavity
assumption, there exists 𝑐 > 0 such that for all x, x′ ∉ int(𝑆) we have

− ⟨b(x) − b(x′), x − x′⟩
∥x − x′∥2 > 𝑐. (6.26)

Since b is bounded on 𝑆, we may pick 𝐵 > supx∈𝑆 ∥b(x)∥. Since 𝑆 is
compact, 𝑆 is contained in {x : ∥x∥ ≤ 𝑟/2} for some sufficiently large
𝑟 > 0, and we may suppose that 𝑟 > 2𝐵/𝑐, so 𝑐′ := 𝑐 − (2𝐵/𝑟) > 0.

Consider arbitrary x, x′ such that ∥x − x′∥ > 𝑟. If x, x′ ∉ 𝑆, condition
(6.26) is satisfied. Thus consider the other case, where without loss of
generality x ∈ 𝑆 (and thus x′ ∉ 𝑆). Let x′′ be the closest point to x that
belongs to 𝑆 and is colinear with x and x′. Then

−⟨b(x) − b(x′), x − x′⟩ = −⟨b(x) − b(x′′), x − x′⟩ − ⟨b(x′′) − b(x′), x − x′⟩

= −∥x − x′∥
〈
b(x) − b(x′′), x − x′′

∥x − x′′∥

〉
− ∥x − x′∥
∥x′′ − x′∥ ⟨b(x

′′) − b(x′), x′′ − x′⟩

> −∥x − x′∥ · 2𝐵 + 1 · 𝑐∥x′′ − x′∥2

where in the final line the Cauchy–Schwarz and triangle inequalities were
used to bound the first term, and for the second term (6.26) was applied to
x′, x′′ ∉ int(𝑆). Thus

− ⟨b(x) − b(x′), x − x′⟩
∥x − x′∥2 > − 2𝐵

∥x − x′∥ + 𝑐 > −
2𝐵
𝑟
+ 𝑐 = 𝑐′.

Combining these two results, we have shown that for all x, x′with ∥x−x′∥ >
𝑟 ,

− ⟨b(x) − b(x′), x − x′⟩
∥x − x′∥2 > min(𝑐, 𝑐′) > 0

and thus the distant dissipativity of 𝜋 is established. □

The most commonly used kernel Stein discrepancies do not offer control
of the Wasserstein-1 distance, though it is possible, through a careful choice
of kernel, to obtain Wasserstein-1 control; we return to this point at the end
of the present section. Rather, the most common kernel Stein discrepancies
offer control of the (weaker) Dudley metric

d𝐷 (𝜋, a) := sup
𝑔∈𝐶0 (R𝑑 ,R)

𝑀0 (𝑔)+𝑀1 (𝑔) ≤1

∫
𝑔(x) d𝜋(x) −

∫
𝑔(x) da(x)

212 Assessing and Improving MCMC

on P(R𝑑), at least in certain scenarios where 𝜋 is distantly dissipative
and the reproducing kernel 𝑘 is carefully selected. For a bounded function
𝑔 : R𝑑 → R𝑝, let 𝑀0(𝑔) = supx∈R𝑑 ∥𝑔(x)∥ and recall that 𝑀1(𝑔) denotes
the Lipschitz constant, from (6.14).

Theorem 6.6 (Weak convergence control; Theorem 8 of Gorham and
Mackey, 2017) Let 𝜋 be distantly dissipative and ∇ log 𝜋 be Lipschitz.
Let K(x, x′) = 𝜙(x − x′)I𝑑 where 𝜙(z) = (1 + ∥z/𝜎∥2)−𝛽 for some 𝜎 > 0,
𝛽 ∈ (0, 1). Then Dk𝜋

(a𝑛) → 0 implies that d𝐷 (𝜋, a𝑛) → 0.

Of course, if ∇ log 𝜋 is Lipschitz, then ∇ log 𝜋 is automatically bounded
on any compact set. The set of test functions that define the Dudley metric
is smaller than that for the Wasserstein-1 metric, and as a result the Dudley
metric is weaker than the Wasserstein-1 metric. Indeed, the Dudley metric
actually metrises the so-called weak convergence of distributions, meaning
that a𝑛 converges weakly (or in distribution) to 𝜋 if and only if d𝐷 (𝜋, a𝑛) →
0. The kernel Stein discrepancy itself does not provide an upper bound on
d𝐷 in this context, but an explicit nonlinear transformation of the kernel
Stein discrepancy does still constitute an explicit upper bound. See Gorham
and Mackey (2017) for full details.

The reproducing kernel appearing in Theorem 6.6 is called the inverse
multi-quadric reproducing kernel, and its use was not accidental. The care-
ful analysis in Theorem 6 of Gorham and Mackey (2017) demonstrates that
reproducing kernels with lighter tails can fail to control weak convergence,
at least in dimension 𝑑 ≥ 3. Moreover, the inverse multi-quadric repro-
ducing kernel is computationally straightforward, and in fact the property
of weak convergence control extends to the parametric family of inverse
multi-quadric reproducing kernels of the form

KIMQ(x, x′) =
(
1 + ∥𝚺−1/2(x − x′)∥2

)−𝛽I𝑑 , 𝚺 ≻ 0, 𝛽 ∈ (0, 1), (6.27)

where 𝚺 is a symmetric positive definite matrix, with the former case
recovered when 𝚺 = I𝑑; see Theorem 4 in Chen et al. (2019). For the
extended family of inverse multi-quadric reproducing kernels in (6.27), the
explicit form in (6.23) becomes

k𝜋 (x, x′) = −
4𝛽(𝛽 + 1)∥𝚺−1(x − x′)∥2

(1 + ∥𝚺−1/2(x − x′)∥2)𝛽+2

+ 2𝛽
[
tr(𝚺−1) + ⟨(∇ log 𝜋) (x) − (∇ log 𝜋) (x′),𝚺−1(x − x′)⟩

(1 + ∥𝚺−1/2(x − x′)∥2)𝛽+1

]
+ ⟨(∇ log 𝜋) (x), (∇ log 𝜋) (x′)⟩
(1 + ∥𝚺−1/2(x − x′)∥2)𝛽

,

6.2 Convergence Bounds for MCMC 213

which can be readily computed provided that the gradient ∇ log 𝜋 can be
pointwise evaluated.

To illustrate the performance of kernel Stein discrepancies, consider
again the Gaussian mixture distribution 𝜋 from (6.3). This distribution
is distantly dissipative2 and has a log-density that is Lipschitz, meaning
we are in the setting of Theorem 6.6. Proceeding with the inverse multi-
quadric reproducing kernel (6.27) with parameters Σ = 1, 𝛽 = 0.5, we
therefore have a guarantee that convergence of the kernel Stein discrepancy
Dk𝜋
(a𝑛) to 0 implies the weak convergence of a𝑛 to 𝜋. In what follows we

let a𝑛 = 1
𝑛

∑𝑛
𝑘=1 𝛿𝑋𝑘

be the empirical distribution associated to a Markov
chain sample path (𝑋𝑘)1≤𝑘≤𝑛 and use kernel Stein discrepancy to determine
whether or not a𝑛 converges to 𝜋. The left panel of Figure 6.3 displays typical
realisations of the Markov chain sample path (top), while underneath the
associated kernel Stein discrepancy (as a function of 𝑛) is displayed. In
addition, the figure includes corresponding results for a Markov chain that
leaves only the first component of 𝜋 invariant (right), and thus does not
provide a consistent approximation of 𝜋. Asymptotically, it can be seen
that the kernel Stein discrepancy correctly distinguishes between the two
scenarios, in which the Markov chain does and does not leave 𝜋 invariant.
However, focusing on the biased Markov chain, at small sample sizes the
discrepancy does not detect that the chain has only explored one mixture
component, and the discrepancy appears to decrease smoothly as more
samples are collected. It is only once a sufficient number of samples have
been collected that the failure of the Markov chain to explore the second
mixture component is detected, and the discrepancy ceases decreasing to
reflect that.

The small 𝑛 behaviour of the kernel Stein discrepancy observed in Fig-
ure 6.3 has been termed blindness to mixing proportions in Wenliang and
Kanagawa (2021), and provides an important note of caution that, when
using kernel Stein discrepancies to assess MCMC output, the failure of
the Markov chain to explore distant high-probability regions may only be
detected if the length 𝑛 of the Markov chain output is large enough. Our for-
mal argument in Section 6.2.1 provides insight into this phenomenon; the
Wasserstein-1 contraction rate constant of the overdamped Langevin diffu-
sion, denoted 𝑐 in (6.11), can be extremely small for distributions such as 𝜋
for which the blindness phenomenon is encountered, since for this diffusion
a move between the effective support of the distinct mixture components

2 The class of distantly dissipative distributions includes all finite Gaussian mixtures with
common covariance matrix; see Gorham et al. (2019).

214 Assessing and Improving MCMC

0 5000 10000
iteration

2

0

2

x

0 5000 10000
iteration

2

0

2

x

101 103

iteration

10 2

10 1

100

D
k
π
(ν
n
)

101 103

iteration

10 2

10 1

100

D
k
π
(ν
n
)

Figure 6.3 Performance of kernel Stein discrepancy. Three
unbiased (left) and biased (right) Markov chains were simulated.
In the unbiased case, the kernel Stein discrepancy Dk𝜋 (a𝑛)
correctly detects that the Markov chains are converging to the
target. In the biased scenario, the kernel Stein discrepancy detects
that the Markov chains have not converged to the correct target,
but this becomes clear only after a sufficient number of iterations
have been performed. [Stars indicate the initial state of each
Markov chain. The density 𝜋 is shaded.]

is a rare event. As a consequence, although kernel Stein discrepancy does
provide convergence control, in unfavourable settings it may provide only
a loose form of control.

In multi-dimensional settings, an appropriate choice of the matrix 𝚺
appearing in the inverse multi-quadric reproducing kernel (6.27) can be

6.2 Convergence Bounds for MCMC 215

important. In situations where a𝑛 can be interpreted as an approximation
of 𝜋, the present authors continue to recommended the use of 𝚺 = I𝑑 ,
following the application of a data-dependent transformation

(x𝑖,∇ log 𝜋(x𝑖)) ↦→ (𝚪−1
𝑛 x𝑖, 𝚪𝑛∇ log 𝜋(x𝑖)), (6.28)

where 𝚪𝑛 is the diagonal matrix whose diagonal entries are the mean
absolute deviation of the corresponding coordinates of (x𝑘)1≤𝑘≤𝑛, the states
on which a𝑛 is supported. This transformation amounts to performing the
change of variables x ↦→ x̃ := 𝚪−1

𝑛 x prior to computing the kernel Stein
discrepancy with 𝚺 = I𝑑 . Indeed, denoting by �̃� the transformed probability
density function, the change-of-variables formula gives that

∇x̃ log �̃�(x̃) = ∇x̃ log [det(𝚪𝑛)𝜋(x)]
= ∇x̃ log 𝜋(x)
= ∇x̃ log 𝜋(𝚪𝑛x̃) = 𝚪𝑛∇ log 𝜋(𝚪𝑛x̃) = 𝚪𝑛∇ log 𝜋(x).

In this recommendation, the mean absolute deviation is used to provide a
robust estimate for the unknown scale of the standard deviation of each
coordinate in 𝜋. One may be tempted to consider extending this recommen-
dation to the more general class of invertible linear transformations, but
the authors of Riabiz et al. (2022) cautioned that if considerable additional
sample-based variability is introduced in estimating a general invertible
linear transform, this can act as an undesirable confounding factor when the
resulting discrepancies are to be interpreted for assessment of MCMC. In a
similar spirit, so-called sliced kernel Stein discrepancies have recently been
developed for high-dimensional applications (Gong et al., 2020); however,
at the time of writing the convergence control of these discrepancies has
yet to be established.

Aside from the specific limitations just discussed, there are a myriad of
statistical applications where kernel Stein discrepancies can and have been
successfully applied. Two distinct uses will be discussed in this chapter; op-
timal weighting of Markov chain output (Section 6.3), and optimal thinning
of Markov chain output (Section 6.4). To close this section, we highlight
that stronger modes of convergence can also be controlled by kernel Stein
discrepancies. The following result, which is a special case of Kanagawa
et al. (2024), indicates how a suitable tilting of the reproducing kernel
enforces moment convergence control:

Theorem 6.7 (Moment convergence control; Corollary 3.4 in Kanagawa
et al. (2024)) Let 𝜋 be distantly dissipative and ∇ log 𝜋 be Lipschitz. Let
𝑞 ∈ N, x0 ∈ R𝑑 , and adopt the shorthand 𝑤𝑟 (x) := (1 + ∥x − x0∥2) (𝑟−1)/2.

216 Assessing and Improving MCMC

Let

K(x, x′) = 𝑤𝑞 (x)𝑤𝑞 (x′)KIMQ(x, x′)+𝑤𝑞−1(x)𝑤𝑞−1(x′) (1+⟨x−x0, x′−x0⟩)I𝑑

where KIMQ is the inverse multi-quadric reproducing kernel from (6.27). Let
(a𝑛)𝑛∈N be a sequence of distributions whose moments up to order 𝑞 exist.
Then Dk𝜋

(a𝑛) → 0 implies that both d𝐷 (𝜋, a𝑛) → 0 and the moments of
a𝑛 up to order 𝑞 converge to those of 𝜋.

In other words, the kernel Stein discrepancies constructed in this manner
have control over the Wasserstein-𝑞 distance, which is equivalent to weak
convergence plus the convergence of moments up to 𝑞th order. The principal
requirement for making use of the kernel Stein discrepancies in Theorem
6.7 is to pick a location x0 ∈ R𝑑 . Theoretical guidance tells us that this
kernel Stein discrepancy provides tightest control over moments when x0 is
in a region of high probability for 𝜋, since otherwise the weightings 𝑤𝑞 and
𝑤𝑞−1 become approximately constant and we recover the standard kernel.
The difficulty of finding such a location x0 will be context-dependent.

6.2.5 Stochastic Gradient Stein Discrepancy
The aim of this section is to discuss how kernel Stein discrepancies may
be extended to the so-called tall data setting, where algorithms such as
stochastic gradient MCMC from Chapter 3 are used. The principal challenge
in this setting is that computation of the gradient ∇ log 𝜋 is associated with
a high computational cost 𝑂 (𝑁) due to the form of the likelihood

𝐿 (x;D) =
𝑁∏
𝑗=1

𝐿 (x; y 𝑗)

as a product of a large number 𝑁 of terms that each need to be differentiated.
Performing Bayesian inference with a prior 𝜋0(x), the posterior distribution
takes the form

𝜋(x) ∝
𝑁∏
𝑗=1

𝜋 𝑗 (x), 𝜋 𝑗 (x) ∝ 𝜋0(x)1/𝑁 𝐿 (x; y 𝑗),

where we assume each 𝜋 𝑗 can be properly normalised. Let a𝑛 = 1
𝑛

∑𝑛
𝑘=1 𝛿x𝑘

define a sequence (a𝑛)𝑛∈N ⊂ P(R𝑑) of discrete distributions in terms
of a sequence (x𝑘)𝑘∈N ⊂ R𝑑 . Fix a batch size 𝑚 ≪ 𝑁 and, for each
𝑘 , independently select a uniformly random subset S (𝑘)𝑚 of size 𝑚 from

6.2 Convergence Bounds for MCMC 217

{1, . . . , 𝑁}. Then

b̂𝑘 :=
𝑁

𝑚

∑︁
𝑗∈S (𝑘)𝑚

∇ log 𝜋 𝑗 (x𝑘)

is a stochastic approximation to the gradient b(x𝑘) = ∇ log 𝜋(x𝑘) that can
be computed at a relatively lower 𝑂 (𝑚) cost. It is then tempting to replace
the exact gradients b(x𝑖) with their stochastic counterparts b̂𝑖 within the
construction of kernel Stein discrepancy. For reproducing kernels of the
form K(x, x′) = k(x, x′)I𝑑 , this construction leads to the following stochastic
approximation of (6.23):

k̂𝜋 (x𝑖, x 𝑗) := ∇x · ∇x′k(x, x′) |x=x𝑖 ,x′=x 𝑗
+

〈
b̂𝑖, ∇x′k(x𝑖, x′) |x′=x 𝑗

〉
+

〈
b̂ 𝑗 , ∇xk(x, x 𝑗)

��
x=x𝑖

〉
+

〈
b̂𝑖, b̂ 𝑗

〉
k(x𝑖, x 𝑗)

Gorham et al. (2020) defined the stochastic kernel Stein discrepancy in this
context as

Dk̂𝜋
(a𝑛) =

√√
1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑘′=1

k̂𝜋 (x𝑘 , x𝑘′).

An immediate question is whether or not the introduction of stochastic-
ity into the gradients jeopardised the weak convergence control property
established in the case of exact gradients in Theorem 6.6. It turns out
that, provided each 𝜋1, . . . , 𝜋𝑁 satisfies the conditions of Theorem 6.6,
a form of weak convergence control continues to hold. Specifically, if
each 𝜋𝑖 is distantly dissipative, and each ∇ log 𝜋𝑖 is Lipschitz, then with
k(x, x′) = (1 + ∥(x − x′)/𝜎∥2)−𝛽, 𝜎 > 0, 𝛽 ∈ (0, 1), Gorham et al. (2020,
Theorem 4) shows that

Dk̂𝜋
(a𝑛) → 0 =⇒ dD(𝜋, a𝑛) → 0

almost surely. This result justifies the use of stochastic kernel Stein dis-
crepancies in their own right, not merely as approximations to kernel Stein
discrepancy that becomes exact when 𝑚 = 𝑁 . Indeed, in principle, only a
batch size of 𝑚 = 1 is required.

Figure 6.4 displays stochastic kernel Stein discrepancies computed for
the sequence of empirical distributions a𝑛 produced using stochastic gra-
dient Langevin dynamics applied to the logistic regression example from
Section 3.5.1. It can be seen that, even for a batch size 𝑚 = 100, which is
much less than the size 𝑁 = 104 of the dataset, the stochastic kernel Stein
discrepancy is capable of providing similar information on the performance

218 Assessing and Improving MCMC

100 101 102 103

iteration

100

101

102

D
k̂
π
(ν
n
)

m= 1, 000

m= 100

Figure 6.4 Stochastic gradient Stein discrepancies. Stochastic
gradient Langevin dynamics was used to generate approximate
samples from the posterior distribution 𝜋 in the logistic regression
example from Section 3.5.1, and stochastic gradient Stein
discrepancies were used to measure the discrepancy between the
empirical distribution a𝑛 of the approximate samples and 𝜋. Here
𝑚 indicates the size of the data subsets that were used to
approximate the gradient.

of the sampler compared to when larger batch sizes, such as 𝑚 = 103 are
used. The predictable decrease of the discrepancy indicates that the intrinsic
bias of stochastic gradient Langevin dynamics is negligible relative to the
error incurred by using only 𝑛 of these samples to construct a𝑛. Neverthe-
less, at the time of writing, there remains scope to improve these stochastic
discrepancies, not least through the use of reduced-variance stochastic ap-
proximations to the gradient.

6.3 Optimal Weights for MCMC
At this point we have seen how computable discrepancies may be con-
structed and used to passively assess the performance of MCMC. Now we
turn to how such discrepancies might be used to actively improve output

6.3 Optimal Weights for MCMC 219

from MCMC. Specifically, in this section we explore how, given a realisa-
tion (x𝑘)1≤𝑘≤𝑛 of a Markov chain and a target distribution 𝜋, we may exploit
the kernel Stein discrepancy to assign a weight 𝑤𝑘 to each x𝑘 in such a man-
ner that the discrepancy between the weighted empirical distribution and
𝜋 is minimised. This is loosely analogous to importance sampling (c.f.
Section 1.1.5), except here the analogue of the importance distribution is
the distribution of the MCMC sample path which, like the posterior itself,
is implicitly defined. As such, the methods we will discuss were termed
Black Box Importance Sampling in Liu and Lee (2017). Surprisingly, we
will see that such retrospective re-weighting can be used to remove the bias
of approximate sampling algorithms, such as stochastic gradient MCMC
from Chapter 3.

Let k𝜋 : R𝑑 × R𝑑 → R be a scalar-valued reproducing kernel for which∫
k𝜋 (x, y) d𝜋(x) = 0 for all y ∈ R𝑑; an example being (6.23). The weights

that we consider are the solution of the following optimisation problem:

w★ :=
©«
𝑤★1
...

𝑤★𝑛

ª®®¬ ∈ arg min
𝑤1 ,...,𝑤𝑛≥0
𝑤1+···+𝑤𝑛=1

Dk𝜋

(
𝑛∑︁
𝑘=1

𝑤𝑘𝛿x𝑘

)
(6.29)

Let a𝑛 be the general weighted empirical distribution appearing on the right-
hand side of (6.29). From (6.22) we haveDk𝜋

(a𝑛)2 = ⟨w,K𝜋w⟩, where K𝜋 is
the 𝑛×𝑛matrix with entries [K𝜋]𝑖, 𝑗 = k𝜋 (x𝑖, x 𝑗). If the matrix K𝜋 is positive
definite then w★ is unique and, although not available in closed form, w★

can be computed by solving a linearly-constrained quadratic optimisation
problem over the positive orthant ofR𝑛. The optimally weighted distribution
will be denoted a★𝑛 in the sequel.

A natural first question is whether the weighted approximation to 𝜋,
obtained by retrospectively assigning weights to output from MCMC, is
consistent. This turns out to be true, under appropriate assumptions, and
moreover, optimal weights can provide bias correction in settings where the
Markov chain is not 𝜋-invariant. Indeed, the recent work of Riabiz et al.
(2022) established that, in the case of a `-invariant, time-homogeneous,
ergodic Markov chain (X𝑘)𝑘∈N ⊂ R𝑑 , then the existence of certain moments
of the ratio 𝜋/` can be used to deduce that

Dk𝜋

(
𝑛∑︁
𝑘=1

𝑤★𝑘𝛿X𝑘

)
→ 0

almost surely as 𝑛 → ∞. Importantly, the biased target ` of the Markov

220 Assessing and Improving MCMC

chain (X𝑘)𝑘∈N does not need to be known to perform Black Box Importance
Sampling in (6.29).

It can sometimes be convenient to relax the non-negativity constraint, to
consider

w̃★ :=
©«
𝑤★1
...

𝑤★𝑛

ª®®¬ ∈ arg min
w∈R𝑛

𝑤1+···+𝑤𝑛=1

Dk𝜋

(
𝑛∑︁
𝑘=1

𝑤𝑘𝛿x𝑘

)
. (6.30)

The weights w̃★ may be negative, and thus the associated ã★𝑛 is a signed
measure in general. Signed measures may not pose a problem if the goal of
computation is to approximate posterior expectations of interest, but if the
goal is to approximate 𝜋 itself then a proper probability distribution may be
preferred. The main advantage of the formulation in (6.30) is that, provided
K𝜋 ≻ 0, the relaxed optimisation problem has a unique and explicit solution

w̃★ =
K−1
𝜋 1

1⊤K−1
𝜋 1

. (6.31)

This formulation is closely related to kernel cubature (also known as
Bayesian quadrature), and specifically coincides with the normalised kernel
cubature of Karvonen et al. (2018). From (6.31), we deduce that the compu-
tational complexity of obtaining optimal weights is in general 𝑂 (𝑛3). This
can preclude the use of optimal weights on desktop computational hardware
when 𝑛 is larger than a few thousand. However, we will see in Section 6.4
how accurate sparse approximations to the optimally weighted distribution
can be efficiently constructed.

To demonstrate the effect of re-weighting, consider the following Rosen-
brock target

𝜋(𝑥, 𝑦) ∝ exp(−(𝑥 − 𝑎)2 − 𝑏(𝑦 − 𝑥2)2)

where here we take 𝑎 = 0, 𝑏 = 3. The distribution 𝜋 might be referred to
as a horseshoe distribution, due to the curved shape of its level sets. To
represent output from a biased sampler, we generate sequence (X𝑘)𝑘∈N of
independent samples from a = N(0, I2) and assign a weight 𝑤𝑖 to each
state X𝑖 according to either (6.29) or (6.30). For these experiments we took
𝚺 = I2, 𝛽 = 0.5, and the transformation in (6.28) was applied. Figure 6.5
displays the qualitative properties of the weights w★ defined by (6.29) (left)
and the weights w̃★ defined by (6.30) (right). In both cases, it can be seen
that states X𝑘 for which the probability under 𝜋 is low are typically assigned
a small weight. On the other hand, optimal weights are not independent,
and the over-representation of states in a local region due to Monte Carlo

6.3 Optimal Weights for MCMC 221

wi w̃i < 0

w̃i > 0

100 101 102

number of samples

10 1

100

101

D
k
π
(ν

)

ν= νn

ν= νn

ν= ν̃n

Self-normalised I.S.

Figure 6.5 Optimal weights for MCMC. Samples from a
standard Gaussian distribution were assigned either the optimal
sign-constrained weights w★ (left) or the optimal unconstrained
weights w̃★ (right), to obtain consistent approximations a★𝑛 and ã★𝑛
respectively of the horseshoe distribution 𝜋 (shaded). These
approximations each demonstrate convergence in the sense of
kernel Stein discrepancy as the number of samples is increased,
while the distribution a of the original samples does not provide a
consistent approximation of 𝜋.

sampling variability is partially mitigated. Comparison of the kernel Stein
discrepanciesDk𝜋

(a★𝑛) and 𝐷k𝜋
(ã★𝑛) indicates that the non-negative weights

w★ perform nearly as well as the signed weights w̃★, while both sets of
weights lead to a substantial decrease in kernel Stein discrepancy compared
to the use of (inconsistent) uniform weights in this experiment.

222 Assessing and Improving MCMC

Of course, in this toy example, one has access to the sampling density
of the X𝑘 and self-normalised importance sampling could trivially be used.
That is, to each sample X𝑘 we assign weights proportional to 𝜋(X𝑘)/a(X𝑘),
and we normalise these weights to sum to 1. The performance of self-
normalised importance sampling is displayed in the lower panel of Figure
6.5, where it is seen to be inferior to the discrepancy-based methods which
we have discussed. Where has this performance gap come from? Well,
in addition to bias correction, the discrepancy-based methods additionally
perform variance reduction, in the sense that the random vectors w★ and
w̃★ each contain components that are strongly inter-dependent. This means
that if a region is over-represented with samples, then the overall weight of
these samples can be collectively reduced to better approximate the target
𝜋. In contrast, self-normalised importance sampling has to rely on the long-
run frequency of independent sampling to ensure that different regions of
the domain are assigned an equal amount of probability mass, and this
negatively affects its finite sample performance.

The satisfactory performance of optimal weights is observed in settings
such as Figure 6.5, where pathological behaviours of kernel Stein discrep-
ancy (such as blindness to mixing proportions; see Section 6.2.4) are not
encountered. However, outside this setting the use of optimal weights can
fail. Further, if the kernel Stein discrepancy has weak convergence control
but not moment control, then there is no guarantee that moments computed
using the weighted empirical approximations a★𝑛 or ã★𝑛 will be convergent in
the 𝑛→∞ limit. These remarks emphasise that a certain degree of caution
is needed when optimal weights are employed.

6.4 Optimal Thinning for MCMC
The output from a sampling algorithm is often used for subsequent compu-
tation, for example, to approximate the posterior expectation of a quantity of
interest. In scenarios where this subsequent computation incurs a non-trivial
computational cost, it is usually desirable to work with as small a number 𝑛
of samples as possible, provided that these continue to provide an accurate
approximation to the posterior target. Standard practice for MCMC is to
retain the subset of states visited along the sample path whose indices are
(𝜎(𝑖))1≤𝑖≤𝑚, where 𝜎(𝑖) = 𝑏 + 𝑐𝑖, 𝑏 is the duration of a burn-in period and
𝑐 is the thinning period. However, this does not directly attempt to arrive at
a compressed representation of the posterior target. The aim of this section
is to discuss how one might select indices (𝜎(𝑖))1≤𝑖≤𝑚 to optimally ap-
proximate the target. In doing so, we will also arrive at a convenient sparse

6.4 Optimal Thinning for MCMC 223

approximation to the optimally weighted distributions studied in Section
6.3.

Given output (X𝑘)1≤𝑘≤𝑛 from a 𝜋-invariant MCMC algorithm, we aim
to construct an approximation a𝑛,𝑚 = 1

𝑚

∑𝑚
𝑘=1 𝛿X𝜎 (𝑘) to 𝜋, which we require

is sparse, meaning that 𝑚 ≪ 𝑛. For concreteness, we consider the setting
where the index sequence 𝜎 is greedily determined according to

𝜎(𝑗) ∈ arg min
𝑘=1,...,𝑛

Dk𝜋

(
1
𝑗
𝛿X𝑘
+ 1
𝑗

𝑗−1∑︁
𝑗′=1

𝛿X𝜎 (𝑗′)

)
for each 𝑗 ∈ N. Using (6.22), and ignoring terms that do not depend on X𝑘 ,
the greedy algorithm is equivalent to

𝜎(𝑗) ∈ arg min
𝑘=1,...,𝑛

k𝜋 (X𝑘 ,X𝑘)
2

+
𝑗−1∑︁
𝑗′=1

k𝜋 (X𝑘 ,X𝜋 (𝑗′))

where, in the event of a tie, it does not matter how a state is selected. The
approximation a𝑛,𝑚, under appropriate regularity conditions, converges to
a★𝑛 in the 𝑚 →∞ limit; see Theorem 1 of Riabiz et al. (2022). Thus, a finite
run of this greedy algorithm could in principle be used as a sparse alternative
to optimal weighting of states from Section 6.3. Further, the computational
complexity of this greedy algorithm is 𝑂 (𝑛𝑚2), which would improve on
the 𝑂 (𝑛3) of the optimal weights from Section 6.3 when 𝑚 ≪ 𝑛. But how
large should 𝑚 be for a𝑛,𝑚 to be a sufficiently accurate approximation of
a★𝑛 to be useful? This question was answered with a theoretical argument in
Riabiz et al. (2022), who established that

Dk𝜋
(a𝑛,𝑚) − Dk𝜋

(a★𝑛) → 0

almost surely as 𝑚, 𝑛 → ∞, under conditions that include requiring 𝑚 to
increase at least as fast as (log 𝑛)2/𝛽 for some 𝛽 ∈ (0, 1). This is a relatively
mild constraint on 𝑚, and in this sense the relative size of 𝑚 compared to 𝑛
can be small.

To perform an empirical comparison of optimal weighting and the greedy
algorithm just described, we return to the Rosenbrock example from Sec-
tion 6.3. Using the same MCMC output, we contrast the approximations
produced using the weights w★ with the approximation produced using the
greedy algorithm just described. Figure 6.6 demonstrates the convergence
of the sparse approximation to the optimally weighted approximation as
𝑚 is increased. This convergence occurs reasonably quickly, suggesting
that a faster, sparse approximation may often be preferred compared to the
weighted approximations from Section 6.3. For these experiments, we took

224 Assessing and Improving MCMC

Markov Chain
Selected States

100 101 102 103

m

10 1

100

D
k
π
(ν

)

ν= νn,m

ν= νn

ν= νn

Figure 6.6 Optimal thinning for MCMC. A subset of size 𝑚 was
selected from the sample path (X𝑘)1≤𝑘≤𝑛 of a 𝜋-invariant Markov
chain in such a way that the kernel Stein discrepancy between the
associated empirical distribution (circles) and 𝜋 (shaded) was
greedily minimised. The selected states are shown on the left
panel, while on the right panel the kernel Stein discrepancy of the
resulting empirical distribution a𝑛,𝑚 is seen to converge to that of
the optimally weighted empirical distribution a★𝑛 that uses the full
Markov chain output. Here 𝑛 = 103.

𝚺 = I2, 𝛽 = 0.5, and the transformation in (6.28) was applied. Although
in this toy example, sampling was not a computational bottleneck, in more
challenging examples the use of these greedy algorithms can provide an
automatic method to both identify and remove an initial burn-in period, and
to compress the sampler output.

6.5 Chapter Notes
The development of sophisticated sampling algorithms, including those
described in this book, should be guided by a qualitative assessment of
their empirical performance over a variety of realistic distributional targets.
The purpose of this Chapter was to demonstrate how one can construct
explicit upper bounds on the “closeness” of the sampler output to the tar-
get. In particular, kernel Stein discrepancies emerged as a computationally
convenient performance measure, which can be computed provided that
the gradient of the target log-density can be evaluated pointwise. Except
for scenarios where the posterior contains distant high-probability regions,

6.5 Chapter Notes 225

the kernel Stein discrepancy can provide an accurate indication of sampler
performance. Further, we described two different scenarios in which out-
put from MCMC can be actively improved using these techniques; optimal
weighting and optimal thinning of MCMC output.

The literature on diagnostic checks for MCMC is almost as old as the
literature on MCMC. Our brief discussion in Section 6.1 barely scratched
the surface of this topic, and we refer the interested reader to more detailed
treatments such as Cowles and Carlin (1996). The convergence diagnostics
we presented are due to Gelman and Rubin (1992); Brooks and Gelman
(1998); Gelman et al. (2014). The somewhat arbitrary choices of 𝛿 = 0.1 and
𝛿 = 0.01 were used, respectively, in Gelman et al. (2014); Vats and Knudson
(2021) and Vehtari et al. (2021). Generalisations of these convergence
diagnostics to the case of a multivariate target, and other improvements,
can be found in e.g. Brooks and Gelman (1998); Vats and Knudson (2021);
Vehtari et al. (2021).

The construction of computable convergence bounds has received limited
historical attention, from authors that include Meyn et al. (1994); Rosenthal
(1995); Roberts and Tweedie (1999); Jones and Hobert (2001). The conver-
gence bound we presented in Section 6.2 was somewhat novel, in the sense
that earlier work has tended to motivate and derive such bounds as a conse-
quence of Stein’s method. Introduced in Stein (1972), this technique from
applied probability has been extensively used to study various instances of
approximation among random variables. However, the last decade has seen
an explosion of research investigating the computational uses of Stein’s
method, sparked by the formalisation of the Stein discrepancy in Gorham
and Mackey (2015). A myriad of computational applications of Stein dis-
crepancies have now been explored, and a recent overview is provided in
Anastasiou et al. (2023).

The use of reproducing kernels led us to a discrepancy that could be
explicitly computed. However, there are some technical challenges asso-
ciated with the use of the resulting kernel Stein discrepancies. First, the
computational complexity of evaluating the kernel Stein discrepancy be-
tween 𝜋 and a distribution a𝑛 supported on 𝑛 discrete states is 𝑂 (𝑛2); c.f.
(6.24). However, this complexity can in fact be reduced to near-linear using
the random features approach developed in Huggins and Mackey (2018),
whose discussion was beyond the scope of this book. Second, one must
ensure that the required properties of the discrepancy hold in the relevant
applied context. Our discussion focused on weak convergence control, but
other relevant properties include separation, meaning that 𝐷 𝜋 (a) = 0 if
and only if 𝜋 = a, and convergence detection, meaning that 𝐷 𝜋 (a𝑛) → 0

226 Assessing and Improving MCMC

whenever a𝑛 converges to 𝜋 in an appropriate sense to be specified. A dis-
crepancy for which both convergence control and convergence detection are
satisfied may be used to compare and select between competing sampling
algorithms, as investigated in Gorham and Mackey (2015, 2017). To this
end, a rigorous technical presentation of kernel Stein discrepancies and
their theoretical properties can be found in Barp et al. (2022).

The use of isotropic reproducing kernels can lead to a curse of dimen-
sion, meaning that differences between probability distributions become
more difficult to detect as the dimension 𝑑 of the state space is increased.
A generalisation that replaces the overdamped Langevin in (6.13) with a
more general class of 𝜋-invariant diffusion processes on R𝑑 was studied in
Gorham et al. (2019), and in the case of kernel Stein discrepancy, this is
equivalent to the use of certain non-isotropic reproducing kernels, however,
the selection of a suitable diffusion to address the curse of dimension has
not been explored. In a constructive attempt to improve the performance of
Stein discrepancy in the high-dimensional context, Grathwohl et al. (2020)
proposed to substitute the reproducing kernel Hilbert space in the integral
probability metric (6.8) with the set of test functions spanned by an appro-
priately differentiable parametric neural network. Such an approach trades
the potentially better detection properties of the discrepancy with both a
lack of theoretical guarantees and the additional computational complexity
involved in the adversarial training of a neural network. Further research
will be required to understand this trade-off in detail.

To limit the scope, we discussed only algorithms for optimal weighting
and optimal thinning, in each case for probability distributions defined on
R𝑑 . Optimal weighting was introduced in Liu and Lee (2017) and its con-
sistency was first established in Hodgkinson et al. (2020). Optimal thinning
was introduced and analysed in Riabiz et al. (2022), and mini-batching
strategies were proposed and studied to further reduce the 𝑂 (𝑛𝑚2) cost in
Teymur et al. (2021). Both algorithms can be generalised to non-Euclidean
domains X through the identification of a suitable Markov process on X
with an explicit generator L𝜋 ; some Markov processes suitable for discrete
domains X are described in e.g. Shi et al. (2022). In related work, Fisher
and Oates (2024) demonstrated how consistent approximation using opti-
mal weights and optimal thinning can even be achieved without access to
gradients of the target, provided that gradients of a suitable approximating
distribution can be obtained.

References

Ahn, Sungjin, Korattikara, Anoop, Liu, Nathan, Rajan, Suju, and Welling, Max.
2015. Large-scale distributed Bayesian matrix factorization using stochastic gra-
dient MCMC. Pages 9–18 of: Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM.

Aicher, Christopher, Ma, Yi-An, Foti, Nicholas J, and Fox, Emily B. 2019. Stochastic
gradient MCMC for state space models. SIAM Journal on Mathematics of Data
Science, 1(3), 555–587.

Aicher, Christopher, Putcha, Srshti, Nemeth, Christopher, Fearnhead, Paul, and Fox,
Emily. 2023. Stochastic gradient MCMC for nonlinear state space models. Bayesian
Analysis, 1(1), 1–23.

Anastasiou, Andreas, Barp, Alessandro, Briol, François-Xavier, Ebner, Bruno, Gaunt,
Robert E, Ghaderinezhad, Fatemeh, Gorham, Jackson, Gretton, Arthur, Ley,
Christophe, Liu, Qiang, Mackey, Lester, Oates, Chris J., Reinert, Gesine, and Swan,
Yvik. 2023. Stein’s method meets computational statistics: A review of some recent
developments. Statistical Science, 38(1), 120–139.

Andrieu, Christophe, Durmus, Alain, Nüsken, Nikolas, and Roussel, Julien. 2021.
Hypocoercivity of piecewise deterministic Markov process-Monte Carlo. The Annals
of Applied Probability, 31(5), 2478–2517.

Baker, Jack, Fearnhead, Paul, Fox, Emily, and Nemeth, Christopher. 2018. Large-Scale
Stochastic Sampling from the Probability Simplex. Pages 6721–6731 of: Advances
in Neural Information Processing Systems.

Baker, Jack, Fearnhead, Paul, Fox, Emily B, and Nemeth, Christopher. 2019. Control
variates for stochastic gradient MCMC. Statistics and Computing, 29(3), 599–615.

Bardenet, Rémi, Doucet, Arnaud, and Holmes, Chris. 2014. Towards scaling up Markov
chain Monte Carlo: an adaptive subsampling approach. Pages 405–413 of: Interna-
tional Conference on Machine Learning (ICML).

Barp, Alessandro, Simon-Gabriel, Carl-Johann, Girolami, Mark, and Mackey, Lester.
2022. Targeted separation and convergence with kernel discrepancies. In: NeurIPS
2022 Workshop on Score-Based Methods.

Beck, Amir, and Teboulle, Marc. 2003. Mirror descent and nonlinear projected subgra-
dient methods for convex optimization. Operations Research Letters, 31(3), 167–175.

Bernardo, José M, and Smith, Adrian FM. 2009. Bayesian Theory. John Wiley & Sons.
Besag, Julian. 1994. Comments on "Representations of knowledge in complex systems"

by U. Grenander and M.I. Miller. Journal of the Royal Statistical Society Series B,
56, 591–592.

227

228 References

Beskos, Alex, Roberts, Gareth, and Stuart, Andrew. 2009. Optimal scalings for local
Metropolis-Hastings chains on non-product targets in high dimensions. Annals of
Applied Probability, 19(3), 863–898.

Beskos, Alexandros, Pillai, Natesh, Roberts, Gareth, Sanz-Serna, Jesus-Maria, and Stu-
art, Andrew. 2013. Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli,
19(5A), 1501–1534.

Bierkens, Joris. 2016. Non-reversible Metropolis-Hastings. Statistics and Computing,
26(6), 1213–1228.

Bierkens, Joris, and Duncan, Andrew. 2017. Limit theorems for the zig-zag process.
Advances in Applied Probability, 49(3), 791–825.

Bierkens, Joris, and Roberts, Gareth. 2017. A piecewise deterministic scaling limit
of lifted Metropolis–Hastings in the Curie–Weiss model. The Annals of Applied
Probability, 27, 846–882.

Bierkens, Joris, and Verduyn Lunel, Sjoerd M. 2022. Spectral analysis of the zigzag
process. Pages 827–860 of: Annales de l’Institut Henri Poincare (B) Probabilites et
statistiques, vol. 58. Institut Henri Poincaré.

Bierkens, Joris, Bouchard-Côté, Alexandre, Doucet, Arnaud, Duncan, Andrew B, Fearn-
head, Paul, Lienart, Thibaut, Roberts, Gareth, and Vollmer, Sebastian J. 2018. Piece-
wise deterministic Markov processes for scalable Monte Carlo on restricted domains.
Statistics & Probability Letters, 136, 148–154.

Bierkens, Joris, Roberts, Gareth O, and Zitt, Pierre-André. 2019a. Ergodicity of the
zigzag process. The Annals of Applied Probability, 29(4), 2266–2301.

Bierkens, Joris, Fearnhead, Paul, and Roberts, Gareth O. 2019b. The Zig-Zag process
and super-efficient sampling for Bayesian analysis of big data. Annals of statistics,
47(3), 1288–1320.

Bierkens, Joris, Grazzi, Sebastiano, Kamatani, Kengo, and Roberts, Gareth. 2020. The
boomerang sampler. Pages 908–918 of: International Conference on Machine Learn-
ing. PMLR.

Bierkens, Joris, Kamatani, Kengo, and Roberts, Gareth O. 2022. High-dimensional
scaling limits of piecewise deterministic sampling algorithms. The Annals of Applied
Probability, 32(5), 3361–3407.

Bierkens, Joris, Kamatani, Kengo, and Roberts, Gareth O. 2023a. Scaling of Piecewise
Deterministic Monte Carlo for Anisotropic Targets.

Bierkens, Joris, Grazzi, Sebastiano, Meulen, Frank van der, and Schauer, Moritz. 2023b.
Sticky PDMP samplers for sparse and local inference problems. Statistics and Com-
puting, 33(1), 8.

Blei, David M, Ng, Andrew Y, and Jordan, Michael I. 2003. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan), 993–1022.

Bou-Rabee, Nawaf, and Sanz-Serna, Jesús María. 2017. RANDOMIZED HAMILTO-
NIAN MONTE CARLO. The Annals of Applied Probability, 27(4), 2159–2194.

Bouchard-Côté, Alexandre, Vollmer, Sebastian J, and Doucet, Arnaud. 2018. The
bouncy particle sampler: A nonreversible rejection-free Markov chain Monte Carlo
method. Journal of the American Statistical Association, 113(522), 855–867.

Brooks, Stephen P, and Gelman, Andrew. 1998. General methods for monitoring con-
vergence of iterative simulations. Journal of computational and graphical statistics,
7(4), 434–455.

References 229

Brooks, Steve, Gelman, Andrew, Jones, Galin, and Meng, Xiao-Li. 2011. Handbook of
Markov chain Monte Carlo. CRC press.

Brosse, Nicolas, Durmus, Alain, Moulines, Éric, and Pereyra, Marcelo. 2017. Sampling
from a log-concave distribution with compact support with proximal Langevin Monte
Carlo. Pages 319–342 of: Conference on learning theory. PMLR.

Brosse, Nicolas, Durmus, Alain, and Moulines, Éric. 2018. The promises and pitfalls of
Stochastic Gradient Langevin Dynamics. Pages 8278–8288 of: Advances in Neural
Information Processing Systems.

Bubeck, Sébastien, Eldan, Ronen, and Lehec, Joseph. 2018. Sampling from a log-
concave distribution with Projected Langevin Monte Carlo. Discrete & Computa-
tional Geometry, 59(4), 757–783.

Cabezas, Alberto, Corenflos, Adrien, Lao, Junpeng, and Louf, Rémi. 2024. BlackJAX:
Composable Bayesian inference in JAX. arXiv preprint arXiv:2402.10797.

Caflisch, Russel E. 1998. Monte Carlo and Quasi-Monte Carlo Methods. Acta Numerica,
7, 1–49.

Carmeli, Claudio, De Vito, Ernesto, and Toigo, Alessandro. 2006. Vector valued repro-
ducing kernel Hilbert spaces of integrable functions and Mercer theorem. Analysis
and Applications, 4(04), 377–408.

Chatterji, Niladri, Flammarion, Nicolas, Ma, Yian, Bartlett, Peter, and Jordan, Michael.
2018. On the theory of variance reduction for stochastic gradient Monte Carlo. Pages
764–773 of: International Conference on Machine Learning. PMLR.

Chen, Fang, Lovász, László, and Pak, Igor. 1999. Lifting Markov chains to speed up
mixing. Pages 275–281 of: Proceedings of the thirty-first annual ACM symposium
on Theory of computing.

Chen, Tianqi, Fox, Emily, and Guestrin, Carlos. 2014. Stochastic gradient Hamiltonian
Monte Carlo. Pages 1683–1691 of: International Conference on Machine Learning.

Chen, Wilson Ye, Barp, Alessandro, Briol, François-Xavier, Gorham, Jackson, Girolami,
Mark, Mackey, Lester, and Oates, Chris. 2019. Stein point Markov chain Monte Carlo.
Pages 1011–1021 of: International Conference on Machine Learning. PMLR.

Chevallier, Augustin, Power, Sam, Wang, Andi Q, and Fearnhead, Paul. 2021. PDMP
Monte Carlo methods for piecewise-smooth densities. arXiv:2111.05859.

Chevallier, Augustin, Fearnhead, Paul, and Sutton, Matthew. 2023. Reversible jump
PDMP samplers for variable selection. Journal of the American Statistical Associa-
tion, 118(544), 2915–2927.

Christensen, Ole F., Roberts, Gareth O., and Rosenthal, Jeffrey S. 2005. Scaling Limits
for the Transient Phase of Local Metropolis-Hastings Algorithms. Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 67(2), 253–268.

Chwialkowski, Kacper, Strathmann, Heiko, and Gretton, Arthur. 2016. A kernel test of
goodness of fit. Pages 2606–2615 of: International conference on machine learning.
PMLR.

Conway, John B. 2010. A Course in Functional Analysis. Second edn. Springer.
Corbella, Alice, Spencer, Simon EF, and Roberts, Gareth O. 2022. Automatic Zig-Zag

sampling in practice. Statistics and Computing, 32(6), 107.
Coullon, Jeremie, and Nemeth, Christopher. 2022. SGMCMCJax: a lightweight JAX

library for stochastic gradient Markov chain Monte Carlo algorithms. Journal of
Open Source Software, 7(72), 4113.

230 References

Coullon, Jeremie, South, Leah, and Nemeth, Christopher. 2023. Efficient and gener-
alizable tuning strategies for stochastic gradient MCMC. Statistics and Computing,
33(3), 66.

Cowles, Mary Kathryn, and Carlin, Bradley P. 1996. Markov chain Monte Carlo con-
vergence diagnostics: a comparative review. Journal of the American Statistical
Association, 91(434), 883–904.

Cox, John, Ingersoll Jr, Jonathan E, and Ross, Stephen A. 1985. A Theory of the Term
Structure of Interest Rates. Econometrica, 53(2), 385–408.

Creutz, Michael. 1988. Global Monte Carlo algorithms for many-fermion systems.
Phys. Rev. D, 38(Aug), 1228–1238.

Dalalyan, Arnak S, and Karagulyan, Avetik. 2019. User-friendly guarantees for the
Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and their
Applications, 129(12), 5278–5311.

Davis, Mark H A. 1984. Piecewise-deterministic Markov processes: A general class of
non-diffusion stochastic models. Journal of the Royal Statistical Society: Series B
(Methodological), 46(3), 353–376.

Deligiannidis, George, Bouchard-Côté, Alexandre, and Doucet, Arnaud. 2019. Ex-
ponential ergodicity of the bouncy particle sampler. The Annals of Statistics, 47,
1268–1287.

Deligiannidis, George, Paulin, Daniel, Bouchard-Côté, Alexandre, and Doucet, Arnaud.
2021. Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle
sampler and dimension-free convergence rates. The Annals of Applied Probability,
31(6), 2612–2662.

Diaconis, Persi, Holmes, Susan, and Neal, Radford M. 2000. Analysis of a nonreversible
Markov chain sampler. Annals of Applied Probability, 10(3), 726–752.

Doucet, Arnaud, Johansen, Adam M, et al. 2009. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704), 3.

Duane, Simon, Kennedy, A.D., Pendleton, Brian J., and Roweth, Duncan. 1987. Hybrid
Monte Carlo. Physics Letters B, 195(2), 216–222.

Dubey, Kumar Avinava, Reddi, Sashank J, Williamson, Sinead A, Poczos, Barnabas,
Smola, Alexander J, and Xing, Eric P. 2016. Variance reduction in stochastic gra-
dient Langevin dynamics. Pages 1154–1162 of: Advances in Neural Information
Processing Systems.

Eberle, Andreas. 2016. Reflection couplings and contraction rates for diffusions. Prob-
ability theory and related fields, 166(3), 851–886.

Fearnhead, Paul, Bierkens, Joris, Pollock, Murray, Roberts, Gareth O, et al. 2018. Piece-
wise deterministic Markov processes for continuous-time Monte Carlo. Statistical
Science, 33(3), 386–412.

Fisher, Matthew, and Oates, Chris J. 2024. Gradient-free kernel Stein discrepancy.
Advances in Neural Information Processing Systems, 36.

Gamerman, Dani, and Lopes, Hedibert F. 2006. Markov chain Monte Carlo: stochastic
simulation for Bayesian inference. CRC press.

Gelman, Andrew, and Rubin, Donald B. 1992. Inference from iterative simulation using
multiple sequences. Statistical science, 7(4), 457–472.

Gelman, Andrew, Carlin, John B, Stern, Hal S, Dunson, David B, Vehtari, Aki, and
Rubin, Donald B. 2014. Bayesian Data Analysis. Vol. 2. CRC press.

References 231

Geyer, Charles J. 1992. Practical Markov chain Monte Carlo. Statistical Science, 7(4),
473 – 483.

Girolami, Mark, and Calderhead, Ben. 2011. Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(2), 123–214.

Gong, Wenbo, Li, Yingzhen, and Hernández-Lobato, José Miguel. 2020. Sliced Kernel-
ized Stein Discrepancy. In: International Conference on Learning Representations.

Gorham, Jackson, and Mackey, Lester. 2015. Measuring sample quality with Stein’s
method. Pages 226–234 of: Advances in Neural Information Processing Systems.

Gorham, Jackson, and Mackey, Lester. 2017. Measuring sample quality with kernels.
Pages 1292–1301 of: Proceedings of the 34th International Conference on Machine
Learning. PMLR.

Gorham, Jackson, Duncan, Andrew B, Vollmer, Sebastian J, and Mackey, Lester. 2019.
Measuring sample quality with diffusions. The Annals of Applied Probability, 29(5),
2884–2928.

Gorham, Jackson, Raj, Anant, and Mackey, Lester. 2020. Stochastic Stein discrepancies.
Advances in Neural Information Processing Systems, 33, 17931–17942.

Grathwohl, Will, Wang, Kuan-Chieh, Jacobsen, Jörn-Henrik, Duvenaud, David, and
Zemel, Richard. 2020. Learning the stein discrepancy for training and evaluating
energy-based models without sampling. Pages 3732–3747 of: International Confer-
ence on Machine Learning. PMLR.

Green, Peter J, and Mira, Antonietta. 2001. Delayed rejection in reversible jump
Metropolis–Hastings. Biometrika, 88(4), 1035–1053.

Grenander, Ulf, and Miller, Michael I. 1994. Representations of knowledge in complex
systems. Journal of the Royal Statistical Society: Series B (Methodological), 56(4),
549–581.

Gustafson, Paul. 1998. A guided walk Metropolis algorithm. Statistics and Computing,
8(4), 357–364.

Hastings, W Keith. 1970. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57, 97–109.

Heidelberger, Philip, and Welch, Peter D. 1981. A Spectral Method for Confidence
Interval Generation and Run Length Control in Simulations. Communications of the
ACM, 24(4), 233–245.

Hodgkinson, Liam, Salomone, Robert, and Roosta, Fred. 2020. The reproducing Stein
kernel approach for post-hoc corrected sampling. arXiv preprint arXiv:2001.09266.

Hoffman, Matthew, Radul, Alexey, and Sountsov, Pavel. 2021. An Adaptive-MCMC
Scheme for Setting Trajectory Lengths in Hamiltonian Monte Carlo. Pages 3907–
3915 of: Banerjee, Arindam, and Fukumizu, Kenji (eds), Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 130. PMLR.

Hoffman, Matthew D, and Gelman, Andrew. 2014. The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, 15(1), 1593–1623.

Horowitz, Alan M. 1991. A generalized guided Monte Carlo algorithm. Physics Letters
B, 268(2), 247–252.

Hsieh, Ya-Ping, Kavis, Ali, Rolland, Paul, and Cevher, Volkan. 2018. Mirrored Langevin
Dynamics. Pages 2883–2892 of: Advances in Neural Information Processing Systems.

232 References

Huggins, Jonathan, and Mackey, Lester. 2018. Random feature Stein discrepancies.
Advances in Neural Information Processing Systems, 31.

Huggins, Jonathan, and Zou, James. 2017. Quantifying the accuracy of approximate
diffusions and Markov chains. Pages 382–391 of: Artificial Intelligence and Statistics.
PMLR.

Johndrow, James E, Pillai, Natesh S, and Smith, Aaron. 2020. No free lunch for
approximate MCMC. arXiv:2010.12514.

Jones, Galin L, and Hobert, James P. 2001. Honest exploration of intractable probability
distributions via Markov chain Monte Carlo. Statistical Science, 16(4), 312–334.

Kamatani, Kengo. 2020. Random walk Metropolis algorithm in high dimension with
non-Gaussian target distributions. Stochastic Processes and their Applications,
130(1), 297–327.

Kanagawa, Heishiro, Barp, Alessandro, Simon-Gabriel, Carl-Johann, Gretton, Arthur,
and Mackey, Lester. 2024. Controlling Moments with Kernel Stein Discrepancies.
arXiv preprint arXiv:2211.05408v4.

Karvonen, Toni, Oates, Chris J, and Sarkka, Simo. 2018. A Bayes-Sard cubature method.
Advances in Neural Information Processing Systems, 31.

LeCam, Lucien. 1986. Asymptotic methods in statistical decision theory. Springer series
in statistics. Springer.

Lewis, PA W, and Shedler, Gerald S. 1979. Simulation of nonhomogeneous Poisson
processes by thinning. Naval Research Logistics Quarterly, 26(3), 403–413.

Li, Wenzhe, Ahn, Sungjin, and Welling, Max. 2016. Scalable MCMC for mixed member-
ship stochastic blockmodels. Pages 723–731 of: Artificial Intelligence and Statistics.

Lindvall, Torgny, and Rogers, L Cris G. 1986. Coupling of multidimensional diffusions
by reflection. The Annals of Probability, 860–872.

Liu, Qiang, and Lee, Jason. 2017. Black-box importance sampling. Pages 952–961 of:
Artificial Intelligence and Statistics. PMLR.

Liu, Qiang, Lee, Jason, and Jordan, Michael. 2016. A kernelized Stein discrepancy
for goodness-of-fit tests. Pages 276–284 of: International Conference on Machine
Learning. PMLR.

Livingstone, Samuel, and Zanella, Giacomo. 2022. The Barker Proposal: Combining
Robustness and Efficiency in Gradient-Based MCMC. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 84(2), 496–523.

Ludkin, M, and Sherlock, C. 2022. Hug and hop: a discrete-time, nonreversible Markov
chain Monte Carlo algorithm. Biometrika, 110(2), 301–318.

L’Ecuyer, Pierre, and Lemieux, Christiane. 2002. Recent advances in randomized quasi-
Monte Carlo methods. In: Dror, Moshe, L’Ecuyer, Pierre, and Szidarovszky, Ferenc
(eds), Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and
Applications. Springer.

Ma, Yi-An, Chen, Tianqi, and Fox, Emily. 2015. A complete recipe for stochastic
gradient MCMC. Pages 2917–2925 of: Advances in Neural Information Processing
Systems.

Ma, Yi-An, Foti, Nicholas J, and Fox, Emily B. 2017. Stochastic gradient MCMC
methods for hidden Markov models. Pages 2265–2274 of: International Conference
on Machine Learning. PMLR.

References 233

Majka, Mateusz B, Mijatović, Aleksandar, and Szpruch, Łukasz. 2020. Non-asymptotic
bounds for sampling algorithms without log-concavity. The Annals of Applied Prob-
ability, 30(4), 1534–1581.

Metropolis, Nicholas, Rosenbluth, Arianna W, Rosenbluth, Marshall N, Teller, Au-
gusta H, and Teller, Edward. 1953. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6), 1087–1092.

Meyn, Sean P, and Tweedie, Richard L. 2012. Markov Chains and Stochastic Stability.
Springer Science & Business Media.

Meyn, Sean P, Tweedie, Robert L, et al. 1994. Computable bounds for geometric
convergence rates of Markov chains. The Annals of Applied Probability, 4(4), 981–
1011.

Michel, Manon, Kapfer, Sebastian C, and Krauth, Werner. 2014. Generalized event-
chain Monte Carlo: Constructing rejection-free global-balance algorithms from in-
finitesimal steps. The Journal of Chemical Physics, 140(5).

Michel, Manon, Durmus, Alain, and Sénécal, Stéphane. 2020. Forward event-chain
Monte Carlo: Fast sampling by randomness control in irreversible Markov chains.
Journal of Computational and Graphical Statistics, 29(4), 689–702.

Nagapetyan, Tigran, Duncan, Andrew B, Hasenclever, Leonard, Vollmer, Sebastian J,
Szpruch, Lukasz, and Zygalakis, Konstantinos. 2017. The true cost of stochastic
gradient Langevin dynamics. arXiv:1706.02692.

Neal, Radford M. 2003. Slice sampling. The Annals of Statistics, 31(3), 705–767.
Neal, Radford M. 2004. Improving asymptotic variance of MCMC estimators: Non-

reversible chains are better. arXiv preprint math/0407281.
Neal, Radford M. 2011. MCMC using Hamiltonian dynamics. Pages 113–162 of:

Brooks, Steve, Gelman, Andrew, Jones, Galin L, and Meng, Xiao-Li (eds), Handbook
of Markov chain Monte Carlo. CRC Press.

Nemeth, Christopher, and Fearnhead, Paul. 2021. Stochastic gradient markov chain
monte carlo. Journal of the American Statistical Association, 116(533), 433–450.

Nemeth, Christopher, and Sherlock, Chris. 2018. Merging MCMC subposteriors through
Gaussian-process approximations. Bayesian Analysis, 13(2), 507–530.

Nemeth, Christopher, Fearnhead, Paul, and Mihaylova, Lyudmila. 2016. Particle ap-
proximations of the score and observed information matrix for parameter estimation
in state–space models with linear computational cost. Journal of Computational and
Graphical Statistics, 25(4), 1138–1157.

Norris, James R. 1998. Markov Chains. Cambridge University Press.
Oates, Chris J, Girolami, Mark, and Chopin, Nicolas. 2017. Control functionals for

Monte Carlo integration. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3), 695–718.

Oksendal, Bernt. 2013. Stochastic Differential Equations: An Introduction with Appli-
cations. Springer Science & Business Media.

Pagani, Filippo, Chevallier, Augustin, Power, Sam, House, Thomas, and Cotter, Simon.
2020. NuZZ: numerical Zig-Zag sampling for general models. arXiv:2003.03636.

Patterson, Sam, and Teh, Yee Whye. 2013. Stochastic gradient Riemannian Langevin
dynamics on the probability simplex. Pages 3102–3110 of: Advances in Neural
Information Processing Systems.

Peters, Elias A J F, and de With, G. 2012. Rejection-free Monte Carlo sampling for
general potentials. Physical Review E, 85(2), 026703.

234 References

Phillips, David B, and Smith, Adrian FM. 1996. Bayesian model comparison via jump
diffusions. Pages 215–240 of: Gilks, Wally R, Richardson, Sylvia, and Spiegelhalter,
David (eds), Markov chain Monte Carlo in practice. Chapman & Hall, CRC.

Pollock, Murray, Fearnhead, Paul, Johansen, Adam M, and Roberts, Gareth O. 2020.
Quasi-stationary Monte Carlo and the ScaLE algorithm. Journal of the Royal Statis-
tical Society Series B: Statistical Methodology, 82(5), 1167–1221.

Press, William H, Teukolsky, Saul A, Vetterling, William T, and Flannery, Brian P. 2007.
Numerical recipes in C++: The art of scientific computing. Cambridge University
Press.

Putcha, Srshti, Nemeth, Christopher, and Fearnhead, Paul. 2023. Preferential Subsam-
pling for Stochastic Gradient Langevin Dynamics. Pages 8837–8856 of: International
Conference on Artificial Intelligence and Statistics. PMLR.

Raginsky, Maxim, Rakhlin, Alexander, and Telgarsky, Matus. 2017. Non-convex learn-
ing via stochastic gradient langevin dynamics: a nonasymptotic analysis. Pages
1674–1703 of: Conference on Learning Theory. PMLR.

Rasmussen, Carl Edward, and Williams, Christopher K. I. 2005. Gaussian Processes
for Machine Learning. The MIT Press.

Riabiz, Marina, Chen, Wilson Ye, Cockayne, Jon, Swietach, Pawel, Niederer, Steven A,
Mackey, Lester, and Oates, Chris J. 2022. Optimal thinning of MCMC output.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4),
1059–1081.

Riou-Durand, Lionel, and Vogrinc, Jure. 2023. Metropolis Adjusted Langevin Trajecto-
ries: a robust alternative to Hamiltonian Monte Carlo.

Ripley, Brian D. 2009. Stochastic Simulation. John Wiley & Sons.
Robbins, Herbert, and Monro, Sutton. 1951. A stochastic approximation method. The

annals of mathematical statistics, 400–407.
Robert, Christian P. 2007. The Bayesian Choice: from Decision-Theoretic Foundations

to Computational Implementation. Springer.
Robert, Christian P, and Casella, George. 1999. Monte Carlo Statistical Methods.

Springer.
Roberts, Gareth O, and Rosenthal, Jeffrey S. 1998. Optimal scaling of discrete approx-

imations to Langevin diffusions. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 60(1), 255–268.

Roberts, Gareth O, and Rosenthal, Jeffrey S. 2001. Optimal scaling for various
Metropolis-Hastings algorithms. Statistical science, 16(4), 351–367.

Roberts, Gareth O, and Rosenthal, Jeffrey S. 2004. General state space Markov chains
and MCMC algorithms. Probability Surveys, 1, 20–71.

Roberts, Gareth O, and Tweedie, Richard L. 1996. Exponential convergence of Langevin
distributions and their discrete approximations. Bernoulli, 2(4), 341–363.

Roberts, Gareth O, and Tweedie, Richard L. 1999. Bounds on regeneration times and
convergence rates for Markov chains. Stochastic Processes and Their Applications,
80(2), 211–229.

Roberts, Gareth O., Gelman, Andrew, and Gilks, Walter R. 1997. Weak convergence
and optimal scaling of random walk Metropolis algorithms. The Annals of Applied
Probability, 7, 110–120.

Rogers, Leonard CG, and Williams, David. 2000a. Diffusions, Markov Processes, and
Martingales: Volume 1, Foundations. Cambridge University Press.

References 235

Rogers, Leonard CG, and Williams, David. 2000b. Diffusions, Markov Processes, and
Martingales: Volume 2, Ito Calculus. Cambridge University Press.

Rosenthal, Jeffrey S. 1995. Minorization conditions and convergence rates for Markov
chain Monte Carlo. Journal of the American Statistical Association, 90(430), 558–
566.

Rubinstein, R Y, and Kroese, D P. 2008. Simulation and the Monte Carlo Method. John
Wiley & Sons.

Scott, Steven L, Blocker, Alexander W, Bonassi, Fernando V, Chipman, Hugh A, George,
Edward I, and McCulloch, Robert E. 2016. Bayes and big data: The consensus Monte
Carlo algorithm. International Journal of Management Science and Engineering
Management, 11(2), 78–88.

Sherlock, C., Thiery, A. H., Roberts, G. O., and Rosenthal, J. R. 2015. On the efficiency
of pseudo-marginal random walk Metropolis algorithms. Annals of Statistics, 43(1),
238–275.

Sherlock, Chris, and Roberts, Gareth. 2009. Optimal scaling of the random walk
Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15(3), 774–798.

Sherlock, Chris, and Thiery, Alexandre H. 2022. A discrete bouncy particle sampler.
Biometrika, 109(2), 335–349.

Sherlock, Chris, Urbas, Szymon, and Ludkin, Matthew. 2023. The apogee to apogee
path sampler. Journal of Computational and Graphical Statistics, 32(4), 1436–1446.

Shi, Jiaxin, Zhou, Yuhao, Hwang, Jessica, Titsias, Michalis, and Mackey, Lester. 2022.
Gradient estimation with discrete Stein operators. Advances in neural information
processing systems, 35, 25829–25841.

Sohl-Dickstein, Jascha, Mudigonda, Mayur, and DeWeese, Michael. 2014. Hamiltonian
Monte Carlo without detailed balance. Pages 719–726 of: International Conference
on Machine Learning. PMLR.

Stein, Charles. 1972. A bound for the error in the normal approximation to the distri-
bution of a sum of dependent random variables. Pages 583–603 of: Proceedings of
the 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 2:
Probability Theory, vol. 6. University of California Press.

Stephens, Matthew. 2000. Bayesian analysis of mixture models with an unknown number
of components-an alternative to reversible jump methods. Annals of Statistics, 40–74.

Sun, Hongwei. 2005. Mercer theorem for RKHS on noncompact sets. Journal of
Complexity, 21(3), 337–349.

Sun, Yi, Schmidhuber, Jürgen, and Gomez, Faustino. 2010. Improving the asymptotic
performance of Markov chain Monte-Carlo by inserting vortices. Pages 2235–2243
of: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds),
Advances in Neural Information Processing Systems, vol. 23.

Sutton, Matthew, and Fearnhead, Paul. 2023. Concave-convex PDMP-based sampling.
Journal of Computational and Graphical Statistics, 32(4), 1425–1435.

Suwa, Hidemaro, and Todo, Synge. 2010. Markov chain Monte Carlo method without
detailed balance. Physical Review Letters, 105(12), 120603.

Teh, Yee Whye, Thiery, Alexandre H, and Vollmer, Sebastian J. 2016. Consistency
and fluctuations for stochastic gradient Langevin dynamics. The Journal of Machine
Learning Research, 17(1), 193–225.

236 References

Teymur, Onur, Gorham, Jackson, Riabiz, Marina, and Oates, Chris. 2021. Optimal
quantisation of probability measures using maximum mean discrepancy. Pages 1027–
1035 of: International Conference on Artificial Intelligence and Statistics. PMLR.

Turitsyn, Konstantin S, Chertkov, Michael, and Vucelja, Marija. 2011. Irreversible
Monte Carlo algorithms for efficient sampling. Physica D: Nonlinear Phenomena,
240(4-5), 410–414.

Vanetti, Paul, Bouchard-Côté, Alexandre, Deligiannidis, George, and Doucet, Arnaud.
2017. Piecewise-deterministic Markov chain Monte Carlo. arXiv:1707.05296.

Vats, Dootika, and Knudson, Christina. 2021. Revisiting the Gelman–Rubin diagnostic.
Statistical Science, 36(4), 518–529.

Vehtari, Aki, Gelman, Andrew, Simpson, Daniel, Carpenter, Bob, and Bürkner, Paul-
Christian. 2021. Rank-normalization, folding, and localization: An improved �̂� for
assessing convergence of MCMC. Bayesian Analysis, 1(1), 1–28.

von Renesse, Max-K, and Sturm, Karl-Theodor. 2005. Transport inequalities, gradi-
ent estimates, entropy and Ricci curvature. Communications on pure and applied
mathematics, 58(7), 923–940.

Vyner, Callum, Nemeth, Christopher, and Sherlock, Chris. 2023. SwISS: A scalable
Markov chain Monte Carlo divide-and-conquer strategy. Stat, 12(1), e523.

Welling, Max, and Teh, Yee W. 2011. Bayesian learning via stochastic gradient Langevin
dynamics. Pages 681–688 of: Proceedings of the 28th International Conference on
Machine Learning (ICML-11).

Wenliang, Li K, and Kanagawa, Heishiro. 2021. Blindness of score-based methods
to isolated components and mixing proportions. In: Proceedings of the NeurIPS
Workshop “Your Model is Wrong: Robustness and Misspecification in Probabilistic
Modeling”’.

Wu, Changye, and Robert, Christian P. 2017. Generalized bouncy particle sampler.
arXiv:1706.04781.

Wu, Changye, and Robert, Christian P. 2020. Coordinate sampler: a non-reversible
Gibbs-like MCMC sampler. Statistics and Computing, 30(3), 721–730.

Xifara, T., Sherlock, C., Livingstone, S., Byrne, S., and Girolami, M. 2014. Langevin
diffusions and the Metropolis-adjusted Langevin algorithm. Statistics & Probability
Letters, 91, 14–19.

Index

acceptance probability, 43, 44, 48–50,
56–58, 60, 113–115, 120–122, 178

acceptance rate, 47, 49–51, 53, 56–58,
61–63, see acceptance probability

acceptance ratio, 46, 48, 49, 51, 55–58,
61, 62

aperiodicity, 20
auto-correlation, 21, 53, 62, 90, 91
auto-correlation time, see integrated

auto-correlation time
autocorrelation, 114
batch, 216, 217
Bayesian matrix factorisation, 15, 16, 164
Bayesian neural network, 16, 17, 97, 98
bias diagnostic, 194
black-box importance sampling, 219
boomerang sampler, 187–190
bouncy particle sampler, 144–148,

150–152, 155–160, 164, 165, 178,
179, 182, 185–188, 191

BPS, see bouncy particle sampler
Brownian motion, 22
burn-in, 45, 47, 65, 73, 99, 107, 154, 193,

222, 224
Cauchy–Schwarz, 30, 206, 209, 211
Cauchy-Schwarz, 161, 172
central limit theorem, 6, 13, 61
component-wise, 48, 53, 54, 62
component-wise updates, 113, 114
concave-convex decomposition, 161,

164, 165
constant velocity dynamics, 138, 145, 186
contraction, 200, 202, 203, 205, 210, 213
control variate, 9–11, 72–75, 77–79, 83,

90, 94, 170, 172, 173
convergence control, 209, 210, 212, 214,

215, 217, 222, 225
convergence detection, 225

convergence diagnostic, 192–194, 196,
199, 225

coordinate sampler, 140–142, 147, 148,
152, 160, 178

curse of dimension, 9, 14, 226
delayed rejection, 119–121
detailed balance, 19, 42, 48, 60, 106, 112,

120, 121
diagnostic, 94
discontinuous target, 176, 178
discrepancy, 201, 202
discrete bouncy particle sampler,

121–124, 144, 191
discrete BPS, see discrete bouncy particle

sampler
distantly dissipative, 82, 210, 212, 213,

215
divergence theorem, 206
dominated convergence theorem, 21, 206
Dudley metric, 211, 212
effective sample size, 21, 53, 155, 175
eigenfunction, 33, 34, 36, 39
eigenvalue, 33, 34, 36–39
ergodic theorem, 20
Euler–Maruyama, 54
Euler-Maruyama, 22, 23, 25, 66, 67, 82,

86, 87, 101
extended posterior distribution, 112
Gelman–Rubin diagnostic, 193–196
generalised moment, 196, 198, 208
generator, 25–27, 203

of PDMP, 134–136
Gibbs move, 48, 49
Gibbs moves, 152
gradient, 15, 54–56, 64, 65, 69–72, 75,

76, 78, 79, 121, 123, 140, 172, 173,
175, 213, 216, 217

control variate estimator, 170, 172, 173

237

238 Index

subsampling estimator, 170
greedy algorithm, 223
guided random walk, 113–119, 124, 127,

128, 143
Gustafson’s algorithm, see guided

random walk
Hamiltonian Monte Carlo, 57, 59, 64,

85–91, 93, 111–113, 125, 152, 188
Hamiltonian Monte Carlo:(, 109
Hessian, 91, 160, 164, 171, 189
Hidden Markov model, 103, 104
Hilbert space, 37, 198
HMC, see Hamiltonian Monte Carlo, see

Hamiltonian Monte Carlo
importance sampling, 7, 11, 13, 14, 40,

42, 43, 50, 219, 222
independence sampler, 42, 49
infinitesimal generator, see generator
inner product, 28–31, 34–39, 207
inner product space, 28, 35, 37
integral probability metric, 200, 201,

203, 210, 226
integrated auto-correlation time, 17, 21,

40, 53, 90, 159
invariant distribution, 135, 136, 138, 140,

141, 143, 145, 146, 148, 177, 178,
182, 185, 186

inverse multi-quadric, 212–214, 216
irreducibility, 20, 118, 122, 127, 141,

145, 152
Jacobian, 60, 61, 117, 186
kernel

Markov transition, 130, 135, 137, 141,
143, 177–179

kernel (Gaussian), 35, 37–39
kernel (Markov transition), 200, 202
kernel (matrix-valued), 206, 208
kernel (scalar-valued), 208, 212, 214, 219
kernel (trace-class), 37, 38
kernel cubature, 220
kernel Stein discrepancy, 91, 208, 209,

211, 213, 215, 216, 219, 221
kernel Stein discrepancy (sliced), 215
kernel Stein discrepancy (stochastic), 217
kernel trick, 28, 35, 196, 199, 207
Langevin diffusion, 22, 25, 26, 53, 54, 56,

203, 210, 213, 226
overdamped, 26, 27, 66, 67, 71, 85
underdamped, 25–27, 85, 88

Langevin dynamics, 67, 100, 102

leapfrog dynamics, 58–62, 64, 111, 125
lifting schemes, 112–119, 125, 127
log-concave, 203, 204, 210
logistic regression, 14, 92, 93, 95, 164,

167, 171, 173, 179, 183, 189
MALA, see Metropolis–adjusted

Langevin algorithm
Markov chain

continuous-time, 129, 134
discrete-time, 17, 43, 106, 107

Markov chain Monte Carlo, 4, 5, 14, 17,
42, 63, 65, 67, 71, 72, 81, 85, 89–91,
93–95, 104, 105, 111, 117, 125, 126,
130, 139–140, 159, 173, 191

mass matrix, 58–61, 87, 110
MCMC, see Markov chain Monte Carlo,

see Markov chain Monte Carlo
Mercer’s theorem, 36
Metropolis–adjusted Langevin algorithm,

43, 53, 67–72, 90, 91, 93
Metropolis–Hastings, 42–45, 47–49, 57,

59, 63, 67, 79, 90, 91, 113, 114, 125
MH, see Metropolis–Hastings
mirrored Langevin algorithm, 101, 102
mixing, 45, 56, 85, 87, 89, 94, 100, 101,

108, 114, 118, 119, 124, 139, 141,
146, 152, 155–159, 170, 173, 175,
178, 191, 201

Monte Carlo integration, 4–7, 9, 11–13
non-reversible MCMC, 106–109, 112,

113, 117, 121, 122, 124, 126–129,
139

numerical integration, 7, 163
Ornstein–Uhlenbeck process, 22–24
orthogonal, 30, 34, 118
orthonormal, 30, 31, 33–37
PDMP, see piecewise deterministic

Markov process
period, 20, 62
piecewise deterministic Markov

processes, 129–130, 134–136,
139–153, 190

comparison of samplers, 155
output, 154–155, 159
reversible jump, 179–184
simulation, 130–153, 159–165, 175

Poisson thinning, 132–133, 160, 163,
169, 170, 173, 175, 184

posterior distribution, 4, 12, 14, 15, 17,
42, 45, 65, 68, 71, 75, 78, 80, 81, 86,

Index 239

89–94, 98, 101–105, 120, 139, 160,
170, 180, 182, 216

preconditioned, 50, 53–55, 58, 64, 89
proposal, 43, 47–51, 53–55, 57–59, 113,

117, 120–123, 152, 178
proposal distribution, 7, 13, 14
quadrature, 7, 8
random features, 225
random walk Metropolis, 42, 43, 48–50,

113, 114, 124
reducible, 20, 48, 117, 145, 151, 188
reflection, 122, 125, 144–146, 178, 179,

185, 187
refresh event/rate, 140, 141, 145–152,

157, 159, 187, 188, 191
reproducing kernel Hilbert space, 28, 37
reproducing kernel Hilbert space

(vector-valued), 207
reproducing property, 207
reversibility, 17, 19, 106
reversible, 42, 44
Riesz representation theorem, 207
Rosenbrock, 220, 223
sample path, 129, 154, 194, 196
scaling, 46, 50–57, 61–64, 109, 157, 173,

175, 191
SDE, see stochastic differential equation
separation, 225
SGHMC, see stochastic gradient

Hamiltonian Monte Carlo
SGLD, see stochastic gradient Langevin

dynamics
SGMCMC, see stochastic gradient

Markov chain Monte Carlo
SGRLD, see stochastic gradient

Riemannian Langevin dynamics
stationary distribution, 4, 17–20, 24–26,

43, 53, 54, 58, 65–68, 84–87, 107,
112, 114, 134, 137, 146, 164, 176

Stein class, 202
Stein discrepancy, 202
Stein operator, 202
Stein’s method, 91, 225
step size, 58, 61, 62, 71, 72, 77, 81, 82,

84, 89–92, 94, 100, 109, 113, 118,
124, 128

stochastic differential equation, 22, 23,
66, 85–89

stochastic gradient, 82, 85–88, 104, 194,
216, 217

stochastic gradient Hamiltonian Monte
Carlo, 85, 87–90, 93, 94, 98, 99

stochastic gradient Langevin dynamics,
69–85, 87, 90–94, 98–101, 105, 170

stochastic gradient Markov chain Monte
Carlo, 65, 85–87, 89–91, 93–95,
97–100, 103, 104

stochastic gradient Riemannian Langevin
dynamics, 89, 102

strong law of large numbers, 6, 12, 20,
196

subsample, 77–79, 86, 90, 94, 104
subsampling, 170
superpositon, 133–134, 143, 147
symmetric set, 201
tall data, 216
thinning, 222
ULA, see unadjusted Langevin algorithm
unadjusted Langevin algorithm, 65–71,

79, 81, 91
vector space, 28–31, 36, 37
warm-up, 45
Wasserstein metric, 68, 81, 82, 90–92,

203, 204, 210–213
weak convergence, 212, 213, 216, 217,

222, 225
weight, 216, 219, 220, 222, 223
Zig–Zag sampler, 167
Zig-Zag sampler, 142–144, 147–150,

152, 155, 157, 159, 160, 165,
168–173, 175, 178, 179, 182, 184,
185

